Advanced
' Micro
Tools

http://www.amctools.com

VMLAB Programming Interface Manual

Part |
User-defined Components

Part Il
AVR™ Microcontrollers and Peripherals

A hands-on guide to develop your own VMLAB
hardware components and micro-peripherals

Last update: Sep/30/2009
(c) Advanced MicroControllers Tools . All Rights Reserved
All the mentioned trademarks are the property of their respective owners

Table of Contents

Part |: User-defined Components Programming Interface..........oocovevveeiieniiieecccieeeeen, 5
PrEIEOUISITES. ...ttt et e et e e et e e e e be e e e bb e e e nnbe e e nnbeeeenneeennneas 5
What components can be developed ... 5
The basics of a user-defined COMPONENLcueiiiiiriiiie e 6
The basic structure of the CH++ COOR.........coooiiiiiiieie e 6
The "blackboX.h" header filecve i 7
D= ol = T oo N L TSRS 7
Declaring and uSiNg VariabIeS...........ooouiiiiiiieie e 8
Callback FUNCLIONS (C.F.) ... 9
Interface FUNCLIONS (1.F.) ...ooie e 10
The Callback FUNCLIONS SEOUENCE..........eiiiiiieiiiie ettt e e 11
Callback FUNCLIONS REFEIENCEeeiiiiie et 12
(O g o = () PR UPRRPRRTRI 12

(@ g 1= (= () USRS 12

(@ g T 0T (o 1LV T o 1 { () U UPRPRRTI 13

(@ g0 (=S 1 {0/ () TR UPRPRRTRI 14
ON_SIMUIAEION_DEGIN{)« 14
ON_SIMUIAETION_ENA() -vveeiriieeiiee et e et e e n e snneeesnneeeas 15
ON_digital_IN_EAGE() -eeeeieeeeiiiie e nnee e 15

(O R o] r="e TR = S () R UPRTPRRTI 15
ON_TIME_SEEP() 1 vveeeemreeeeiieesitee e ettt e et e st e et e e st e e s s se e e e sste e e snteeesnbeeesnseeesnseeesnneaens 16
(O €= 00T 0o I 101 () IR UPRPPRRTI 17
ON_gadget_NOLITY() cueeeeeeiee et e e e e e 17

(@ VT o o == L= [o: () ISR UPRPRRTI 18
Interface FUNCLIONS REFEIENCEueeiiiie e 19
2] T [() TSR 19
GET _CLOCK() ttetteeateeatueenieeaieessteessesateessaeesseesseesssesssesanseesssssssessnssessessssesssennns 19
GET _DRIVE() ctvteitieitie ittt stee st ste et e teesseeenteeanteesseeesaesnsaesneeesesaneeenns 19
GET _HANDLE() cteeitteeieesie et stee sttt te e st e e eeseesnseesneeeseesneeenns 20
GET _INSTANCE() e euveeetieeiteeeieeaieesteesieessaeesteessteesseeessessseesseeassessnseessessssessnseenns 20
GET _LOGIC() ctveeteraieeaiieesieeaieesteestessteessaeesseeaseessesessesanseessesansessnseessessssessnsennns 21

(€1 I = AN 1Y 1 SRR 21
GET _VOLTAGE() eeeitteiieeieeaiee st esiee e esseeesteesteesseeesseesnseessesansessnseessessssessnseenns 22
POWER() 1.ttt et eiee et se e stee s stee et et e et et e st e et e anseessaeeseeanseennaeeseeennis 22

o LV I () TSR 22
REMIND _IME() tiiiiieiit ettt sttt snaeenee s 23

S I B (V4 = TSRS 23
SET _LOGIC() cuveeteeaiieaiieesieeaieesteesteesteessaeesseesseesseeessesanseessesesessnseessessnsessnsennns 24

SET WV OLTAGE().eeeiteeauiasieeaiteesieesteeaieessaeesteesseessseessessnseesseeassesssseessessssessnsennns 24

LI =AY () PSPPSR 25

LI AN O = S PROURRUSRPRO 25

The ULIItY "USEBICOMP.EXE" ...ttt ettt e et e e anne e e snneeeas 26
GENEIAl OVEIVIBWW ...ttt sttt e et e e et e s naa e e e ste e e esaeeeanneeesnseaeas 26
The resoUrCES fIlE (RC) ... uui i 27
DebugQging COMPONENES.........ueieieeeeiiieeaiteeeasieeessieeeessteeessteeesseeeabeeeasseeeasseessnseesesnseesanes 28
OptiMIZING PEITOMMEANCE.ciiiie ettt e e e e ssee e e sseeeesnneeeas 28
A Crash course 0N WiNn32 CONLIOISc.uuiiiiieeiiiie s 29

Code sample #1: a voltage-to-frequenCy CONVEITEScceeiieiririeeiniee e 30

Code sample #2: ainteractive eVent COUNEYcooeiiiiiieeiiee e 31
Part Il : AVR™ Microcontrollers and Peripherals Programming Interface..................... 33
SCOPE & PrEIEOUISITES.cueeieiieieetieeeeiiee et ee e stee e st e st e e s tee e ese e e s sbaeeessneeesnseeeanseeesnneeens 33
USEr-defiNE0 AVRS ...ttt rn e e e e e nnne e e enneeeenes 33
TRE INT FII et e e e e snb e e snbe e e snneeeas 34
OVBIVIBIW ...ttt ettt et e et e e et e e et e e e et b e e e aee e e smeeeessbeeeanseeeanneeeanseneas 34
PO S, e e e e e e e s s r e e e e e e e e s nnnnnes 35

F o (o [4T0] o= I o1 PR TR 35
Interrupt flag and Mask rEQISLErS.ueii i 35
PeripheralS definitioN...........ooi i 35
UGS ...ttt r e e e e e s s r e e e e e e e e e e nnnnnes 36
Special purpose register handling. The DUMMY Peripheralcoocoeiiiiiiiinnniennn. 36
Coding MICro-peripheral DLLS........cooiiiiiiie e eeee e 37
OVEBIVIBIW ...ttt ettt e st e e ettt e st e e e e bt e e e sae e e naeeessbeeeanneeeanseeennseeaas 37
The "blackbox.h" header filecoo i 37
N O3 o o I TR 38
Handling 1/0 ports. The AVR VMLAB port model ..o 38
Handling 1/0 ports. Port declarations.............oocueeeiieiiiiieee e 39
Handling 1/0 ports. Additional PINS..........cceeiiiiiiiiiieeeeee e 39
Handling 1/0 ports. Retrieving logic / analog SIgnals.........ccccevieeiiieeiiiee e 40
Handling 1/0 ports. Port change NOtIfiCatioNnScooceeiiiiiiiiiieeee e 40
Handling registers. The WORDS8 dafatype........coeivereiiieeiiiiieeiieesiee e 40
Handling registers. Declatation and Mappingccceeeeeerieeenieeesniee e eseeeeseee e 41
Handling registers. DISPIaycoo et 42
HaNAIING INEEITUPLS. ... et sa e e e e e enes 42
Callback FUNCLIONS REFEIENCEeeiiiiie et 43
New Callback FUNCLIONS............ooiiiiiiie e 43
ON_ClOCK_ChaNGE(). eeeeeeie et 44
ON_INSEFUCTION() ettt ettt ettt sttt et e s e e sste e e snbe e e snseeesnseeennneeeas 44
(O 0= (U o LA = { () IR UPRPPRRTI 45

(@ g T 070 {11/ () TR UPRPPRRRI 45

(@ g oo A= [o = () T SRR UPRPPRRTI 46
ON_POIt_EAGE() | 1ot nnee e 46

(O (=015 (= g 1= o [() USRI a7

(O (=015 = g 1 (= () R UPRPRRI 48

(O T (=57 () TR UPRPPRRRI 438

(O TS L= o] () SR UPRPPRRI 49

INterface FUNCLIONS REFEIENCEot e e e e e e e e eens 50

GET _FUSE() -eeeetteee ettt ettt ettt sttt et e et e e s e e nnneeesnnee s 50
GET_MICRO _DATA) ettt ettt ettt ettt e st e s nae e snneeesnnea e 51
GET_MICRO _INFO()t tuttteaieeeaieeeaieeeesieeessieeessieeessssesssssesassseesssseessssessssesssnsenens 52
N[2 I 1 TSRS 52
REMIND _ME2().eeieeiiie ettt ettt e e e 52
S I SRR RR 53
SET _CLOCK() euutteeauteeeareeeaieaeaieeeateeessseesasseeessssessssseessssesasssessassesssssesssnsesssnsesens 54
SET_INTERRUPT _ENABLE() eeeeiiiieiiie et 54
SET_INTERRUPT _VECTORS() ..eeiteeeiiiieaiieeesiiieesieeesiieeesiiee e siseeessee e sseeesneae s 55
SET _INTERRUPT _FLAG() .uttiiiiiieiiieeaiieeesiiee e sieee e seee e siteeesnses e snsee s snsee e sseeesnneaeas 55
S I = O 8 I () TR USRS 56
SET _PORT _ATTRI() eetiitiieiiiie et tee sttt stee st e e e e snnee e 57
TAKEOVER PORT() .etiiiieiaiiieesiieesieeesieeesiee et e e s stae e ssse s e snseessnseessnseessnneas 57
RV = L@ TS PPR 58
WARNING() ettt ettt sttt e st e et e e e st e e e nnse e e anseeennneeennes 59
The WIin32 ReSOUICES File ((RC)eoi i 62
General TIPS aNd AGQVICES.........uiiiiiieiieeeeiee e stee sttt ettt e e saae e e snsee e snseeesnneeeas 62

Part I: User-defined Components
Programming Interface

Prerequisites

In order to develop user-defined components, the following tools and skills are necessary:

A Win32 C++ compiler. If you do not have one installed in your computer, there are
some of such compilers available as freeware in the Web. We recommend Borland
C++ 5.5 command line toolkit (BCC55). Download it from:
http://www.borland.com/products/downloads/download cbuilder.html. VMLAB provides a
utility, "usercomp.exe", which is a minimum Win32 IDE especially designed for this
task. Its default settings are ready to work with BCC55, athough it can be configured
for any other command-line tool.

A Win32 resources compiler, if your component has an associated control window.
Available also as free download as above. BC55 doesinclude it.

Some basic understanding of the so-called "callback™ programming technique.
Callback programming implies to write functions that you never call. It is your
partner software, VMLAB in this case, who will call them when needed.

Basic C programming skills. Although the involved source file has to be compiled as
C++, the source code aspect can be 100% C-style. There is no need to define classes,
etc.

What components can be developed

Any analog/digital subsystem, with the following restrictions:

Infinite impedance in inputs, either analog or digital. Current flow through pinsis not
allowed in thisrelease.

Analog outputs will be clamped to the VDD - VSS values.
Analog outputs cannot be a function of analog inputs a a given time.

The above restrictions do not derive from the impossibility to simulate them in VMLAB, but
from the fact that it would be needed atoo complex user interface. Therefore, in afirst
release of this Programming Interface such features have not been implemented.

Components do not mean only true hardware models; agreat variety of other tools and
goodies can be also developed, like:

Virtual instruments.
Digital pattern generators based on special file formats.

* Ad-hoc tools for debugging purposes, like establishing complex signal-based
breakpoints.

* Filerecorders.

» Ad-hoc interactive panels.

The basics of a user-defined component

A VMLAB user-defined component isaWin32 DLL, compiled and linked from a C++
source file in which you have to write certain Callback Functions (C.F.). VMLAB will call
such functions upon determined simulation events, establishing the component behavior.

The template C++ source file to fill up such functions it is automatically generated by the
"usercomp.exe” utility. Callback Functions have a common naming style, On_xxx(..), being
"xxx" the event producing the function call. Examples: On_create(..), On_destroy(..),
On_digital_in_edge(..)

Within Callback Functions you can invoke I nterface Functions (1.F), for example, to set
logic values at pins, read voltages from pins, etc. Interface Functions are named uppercase
and normally have the form SET_XXX(..) / GET_XXX(..). Examples. SET_LOGIC(..),
GET_VOLTAGE(..), etc.

Both the above C.F. and |.F., need to identify the component I/Osto address them in the
proper way. There are some macr os to do this and some other jobs. Example:
DECLARE_PINS, ANALOG_IN(..), €c.

How to place a user-defined component in the VMLAB Project File? Just use the underscore
' ' before the name, and place it as a macro-model (X card). For aDLL file called "abc.dIl",
the placement line in the .PRJ file will be:

Xi nst Name _abc(10 20) PB1 PB2 PB3 PB4 ; My own conponent

This component has 4 1/0 and 2 parameters. "instName" is an arbitrary instance name.

User-defined component DLLs must be placed either in the current working directory or in a
general library directory: <VMLAB install dir>\userlib>. It isrecommended to use this last
directory, in order to have access from all the projects.

The basic structure of the C++ code

The C++ file must have the following structure:

» Header, comprising the Win32 selected include file, an own VMLAB header called
"blackbox.h", and the DLL entry function; the equivalent to main(), but for DLLSs:
DIIEntryPoint(..).

* Pinsdeclaration area, identified with macros DECLARE_PINS/ END_PINS

* Global variables declaration area DECLARE_VAR/END_VAR. See a alater point
why and when it is necessary to declare global variables in thisway.

* Window specification macro USE_WINDOW(..). At this point is where you define
whether or not the component will have an associated window. Values can be zero,
for no window, or aWin32 Dialog resource ID (WINDOW_USER x).

» Callback functions related code. Some of these functions must be present, even if
contain no code; some others can be omitted

See some code examples at the end of the document.

The " blackbox.h" header file

Part of the VMLAB User-defined Components Interface functionality is implemented in this
header. It provides a user-transparent way to declare pins, automatic instance handling, etc.,
that otherwise would result tedious.

Likewise, the "blackbox.h" file, provides some "typedef 's' and "#define's" especially
oriented to hardware management. C.F. and |.F. use such types in its definitions.

* PIN: identifiesapin declared in DECLARE_PINS/END_PINS.
» LOGIC: adigital logic value. It can be 0, 1, UNKNOWN and TOGGLE.
» EDGE: identifies asignal edge in adigital pin. It can be RISE or FALL.

In addition, the C++ code uses also some standard Win32 types, like HWND (window
handle). Therefore it is always necessary to include the relevant Win32 header file, usually
<windows.h>. We refer to some Win32 APl manual for information about this subject.

The "blackbox.h" fileislocated at "<VMLAB_install_dir>\bin", therefore you must either
invoke the full path in the source code, or use the brackets directive, #include <blackbox.h>,
provided that the mentioned path is present in the compiler “include” path list.

Declaring I/Os

The component 1/0 pins have to be declared as C++ identifiers in a special section enclosed
by the macros DECLARE_PINS/ END_PINS, asin this example:

DECLARE_PI NS
ANALOG | N(AINL, 1);
ANALOG | N(AI N2, 2);

DI G TAL_OUT(DOUT1, 3);
Dl G TAL_OUT(DOUT2, 4);
END_PI NS

Thisisacomponent with two analog inputsidentified as AIN1, AIN2, and two digital
outputs identified as DOUT1, DOUT2. The numbers identify the node placement sequence
inthe VMLAB project file.

If the component DLL is MyCell.dll, the placement in the Project File will be:

AIN1 AIN2 DOUT1 DQUT2 pin names

Xl MCell PBl1L PBO PCl PC2 ; node nanes

Therefore, the pin AIN1 is connected to the node PB1, pin AINZ2, to the node PBO, etc.

Following are the available declaration macros for analog inputs/outputs, and digital
inputs/output/bidirectional pins:

ANALOG_IN(<pin identifier>, <number>)
ANALOG_OUT(<pin identifier>, <number>)
DIGITAL_IN(<pin identifier>, <number>)
DIGITAL_OUT(<pin identifier>, <number>)
DIGITAL_BID(<pin identifier>, <number>)

Declaration rules:

* <pinidentifier> must be avalid C++ identifier.

* <number> must be a positive number. Note that the maximum <number> will be the
number of nodes needed in the cell placement.

» <number> can be zero. This has a special meaning. Pins declared as 0, mean
unconnected. This can be useful for component debugging or maintenance. Like this,
it is possible to void a pin without the need to re-arrange the source code or the cell
placement in the .PRJfile.

» <number> cannot be repeated. Two pins cannot share the same sequence placement.
Even if the compiler won't show any error, VMLAB will flag it at load time.

» There can be “missing numbers’ in a sequence. For example, you can declare atwo
pins component, with the sequence #4 and #2. Thus, the placement will need 4 nodes,
in which #1 and #3 are considered unconnected. This can be useful for
debugging/maintenance (like the pin #0).

Declaring and using variables

A special macros st is provided to define C++ global/static variables: DECLARE_VAR
/END_VAR. Why that?Isit not possible to define a global, static storage variable in the
standard way, like this?

int My_voltage;

Yes, it is possible; the problem arises just if you place multiple instances of the component,
since all those instances will share the same "My _voltage" variable. This can be unacceptable
if such variable contains, for example, avoltage that is trictly related to the instance. A
"My_voltage" per instance is needed.

To insure a copy of each global variable per instance, declare your variablesin the
DECLARE_VAR/END VAR area

/1 A set of variables by instance is automatically kept
DECLARE_VAR

int My_voltage;

int My_array[10]

MySt ruct *My_pointer;
END_VAR

C/C++ initializers are not allowed within DECLARE_VAR/END_VAR.
All variables are automatically initialized to zero a component creation, but not at simulation
start, therefore this task is user's responsibility.

To refer to variables defined in DECLARE_VAR/END_VAR, use the VAR(..) macro.

Examples:

VAR(My_vol tage) = 3. 25;
J = VAR(My_array)[3];
VAR(My_poi nter)->ny_nenber = 10;

Caution !

C.F. (On_create(..), On_destroy(..) , €tc.), are called for each instance. If you declare
variables outside DECLARE_VAR/END_VAR, pay attention to initialize pointers, files etc, and
NULL them after deletion, otherwise, a delete of previous deleted pointer, etc, could occur, causing a
probable access violation fault. Example of correct code:

FILE *My_file = NULL; /1 Initialize always

const char *On_create() {
if(!'My_file) { // No problemif called several tines
My _file = fopen("nyfile.dat", "rt");

}
return NULL;
}

void On_destroy() {
if(My_file) { // No problemif called several tines
fclose(My_file);
My_file = NULL;
}

}

Callback Functions (C.F.)

The last part of the C++ source code must be the C.F. implementation. VMLAB will call
automatically such functions during the simulation flow. They are the placeholders for the
code that describes the component behavior.

Some functions must be defined, even if contain no code; some others are optional and can
be omitted if not used. "usercomp.exe", provides placeholders for all functions, mandatory or
not. Later on, non-mandatory ones can be optionally deleted.

List of C.F. prototypes in alphabetical order. Names in bold are mandatory functions: the
compiler/linker will give an error if no present.

voi d On_break(BOOL pStatus);

const char *On_create();

void On_destroy();

void On_digital _in_edge(PIN pDi gl n, EDGE pEdge, double pTine);
voi d On_gadget noti fy(GADGET pCGadgetld, int pCode);

void On_rem nd_ne(doubl e pTinme, unsigned |ong pData);

void On_sinmul ation_begin();

void On_sinulation_end();

void On_tine_step(double pTine);

doubl e On_vol tage_ask(PI N pAnal ogQut, double pTine);
void On_wi ndow_i ni t (HAND pW ndow) ;

void On_update_tick(double);

Interface Functions (1.F.)

Within C.F., the way to define the hardware behavior, like setting pin logic values,
reading/setting voltages, as well as some other miscellaneoustasks, and tracing/debugging
goodies, isto use this set of functions.

To distinguish them from the C.F., they are named with FULL UPPERCASE.

List of I.F. prototypes, classified by type:
Data retrieving:

HAWD GET_HANDLE(i nt pGadgetld);

const char *GET_I NSTANCE() ;

LOG C GET_LOA C(PI'N pPin);

doubl e GET_PARAM unsi gned | ong pl ndex) ;
doubl e GET_VOLTAGE(PI N pPin);

doubl e GET_CLOCK();

BOOL GET_DRI VE(PIN pPin);

doubl e PONER() ;

doubl e TEMP();

Data setting:

void SET_DRI VE(PI N pPin, BOOL pEnabl e);
void SET_LOG C(PIN pPin, LOd C pVal ue, double pDelay = 0);
void SET_VOLTAGE(PIN pPi n, double pVal ue);

Debugging and miscellaneous:

voi d BREAK(const char *pMessage = NULL);

voi d PRI NT(const char *pText);

voi d REM ND_ME(doubl e pDel ay, int pParam = 0);
voi d TRACE(bool pEnable);

See at Interface Functions Reference a detailed description of each function.

10

The Callback Functions sequence

Following isatypical sequence of how VMLAB callsthese functions. Let’s assume atime
step of 1us, although this is determined automatically.

On Project File parsing, (command "Build"):

e On _create()
e On_window_init(..) If window defined

On simulation start, (command "Go"):

* On_simulation_begin()
On_time_step(..) For Time=0

... For Time = 1.0e-6

* On_voltage ask(..) If applies

* On_time step(..) Always

* On_digital_in_edge(..) If applies
* On_remid_me(..) If applies

* On_gadget_notify(..) If applies

... For Time = 2.0e-6

* On_voltage ask(..) If applies

* On_time step(..) Always

* On_digital_in_edge If applies
* On_remid_me(..) If applies

* On_gadget_notify(..) If applies

On command "Restart Simulation”:
e On_simulation_end(..)
On “Project File | Rebuild or Close”™:
» If present, the window interface is destroyed (no special notification)

* On_destroy(..)

The time step is automatically calculated by VMLAB, mainly as function of the micro-
controller clock rate. If a particular time step needs to be forced, use REMIND_ME(..)
function.

The C.F. On_updated_tick() iscalled at aregular time intervals, oriented to update visual
controls (see more in the C.F. Reference)

11

Callback Functions Reference

On_break()

voi d On_break(BOOL pStatus);

This C.F. isreceived when the micro instruction flow is stopped by some reason: breakpoint,
warning, user stop, etc (then, the ‘pStatus pararameter will be TRUE) or either, when the
instruction flow is resumed, due to the user clicked the ‘ Go/Continue’ button (‘ pStatus
parameter will be FALSE).

Note that once On_break(true) has been received, there can be other notifications while the
instruction flow is stopped; for example, if the user performs some actions that involve are-
calculation of the electrical circuit conditions. Of course, during a break, all parameters
containing the simulation time will show that the value does not change.

Example:

voi d On_break(BOOL pVal ue) ({
i f(pVal ue)
PRI NT(“Let’s take a break”);
el se
PRI NT(“Back to work”);

On_create()
const char * On_create();

VMLAB notifies that component needs to be created. This function is called when the
command "Project | Build" is invoked.. The function return must be either NULL, for a
successful creation, or an error message, if something wrong prevents the component
behavior to be OK. Such message will be displayed as an error in the Messages Window.

Typical uses:
* Open and read adatafiles.
» Allocate memory, objects, etc. (malloc(), new, &tc).
» Component initialization, provided it is aforever initialization. Simulation dependant
initialization must be performed at On_simulation_begin.(..).
» Parameters consistency check.

Do not use On_create(..) to initialize pins logic/voltage values. Use instead
On_simulaton_begin(..).

Example:

12

char Data_table[256]; // Al instances share these
FILE *My_file = NULL; // vari abl es!

const char *On_create()
//**********************

{
for(int j =0; j < 256; |++)
Data table[j] = (char)j; /1 Fill data table
if('M_file) {
My _file = fopen("datafile.dat", "rt");
if('M_file)
return "Unable to open data file"; // Error
}
i f(GET_PARAM 1) < 1)
return "lnvalid paraneter"); // Wong conmponent
el se
return NULL; // Successful creation
}

On_window_init()
void On_wi ndow_ i ni t (HAND pHandl e)

VMLAB will notify with this function just in case the component has an associated window
(USE_WINDOW/(..) not zero). The parameter "pHandle" is the main component window
handle; usethishandle if you need to hook an own Windows structure, (VCL, MFC,...),
setting your own windows as children.

Typical use: initialize window controls/gadgets. Usually, coding tasks related to this function
require certain knowledge of the Win32 API.

Example:

void On_wi ndow_ i ni t (HAND pHandl e)
//******************************
/1 Fill a ListBox control with 4 Strings. ListBox
/1 default style is to be sorted.

{
static const char *nyText[] = {"A", "C', "B", "D'};
HAND | Box = GET_HANDLE(GADGETS) ;
for(int j =0; j < 4; j++) {
SendMessage(| Box, LB _ADDSTRI NG O, (LPARAM nyText[j]);
}
}
Caution !

13

Do not perform any window related operation within On_create(..), since at that time the
window has not yet been created by VMLAB, therefore any attempt to use
GET_HANDLE(..) will cause an error message to be displayed and a NULL return .

On_destroy()
void On_destroy();

VMLAB callsit after closing the project, or if by any reason the Project File needs to be
rebuilt, due to amodification. On_destroy(), gives a chance to undo the operations
performed in On_create(..), like closing files, free memory, delete objects, etc. Like in
On_create(), the window handle, if created, is no longer available, therefore, a
GET_HANDLE(..) would return NULL.

Example:

voi d On_destroy()

//***************

if(My_file) {
fclose(My_file);
My_file = NULL;
}
}

On_simulation_begin()
void On_sinulation_begin();
Called when the simulation is starting, at Time = 0. Typical uses:

» Component initialisation: 1/0Os logic levels, internal variables, etc.

* Open datafilesthat can change with the simulation, due to parameters, etc. If the file
is fixed regarding the simulation, this job could be done at On_create(..).

» Launch simulation time ticks, by using the function REMIND_ME(..).

» Allocate memory (‘new’ objects, malloc(..), etc) that are ssmulation dependant.

Example:

void On_sinmul ation_begin()
//************************

{
VAR(Aver age_vol tage) = PONER() / 2;
VAR(Dat a_array) = calloc(1024, sizeof(char));
SET_LOA C(QUTl, 0);
REM ND_ME(10. Oe- 3);

14

On_simulation_end()
void On_sinulation_end();

Called after a"Restart” command. It provides a chance to undo the operations performed at
On_simuation_begin(..), like free memory, delete objects, close files, etc.

Example:

void On_sinulation_end()
//**********************

free(VAR(Data_array));

On_digital_in_edge()
void On_digital _in_edge(PIN pDi gl n, EDGE pEdge, double pTine);

Reports an edge occurrence at a digital input pin at time ="pTime". The pin "pDigln" must
have been declared as DIGITAL_IN(..). "pEdge" will come with values either RISE or
FALL.

Example:

void On_digital _in_edge(PIN pDi gl n, EDGE pEdge, double pTine)

//***

/1 CLOCK PIN needs to be delared as DIG@ TAL_IN

{
LCd C dat al n;
if(pDigln == CLOCK_PIN && pEdge == RI SE) {
dataln = GET_LOG C(DATA PIN);
}
}

On_voltage_ask()

doubl e On_vol tage_ask(PI N pAnal ogQut, doubl e pTine)

This function applies to analog outputs. VMLAB is asking to return the analog outputs
voltage that must behave in a continuous-time way. Unlike SET_VOLTAGE(..) that would

produce sharp voltage step-like variations, returning a value in On_voltage ask(..) will cause
continuous time waveforms, as a function of time.

15

The parameter "pAnalogOut” will provide a pin identifier that must have been declared as
ANALOG_OUT(..). Thereis a special return value: KEEP_VOLTAGE, that is interpreted by
VMLAB asto keep the previous voltage.

SET VOLTAGE(..) and SET_LOGIC(..) are not allowed within this function; a runtime
error will be flagged.

Example:

DECLARE_PI NS
ANALOG OUT(SI NE_OUT, 1);
ANALOG_OUT(RAMP_OUT, 2);

END_DECLARE

doubl e On_vol tage_ask(PI N pAnal ogQut, doubl e pTine)
//***
/1 SINE_QUT: 1KHz, 1Vp-p centered sinewave

/1 RAMP_QUT: 1ms ranp; stay after

/1

{
const double K= 2 * 3.1416 * 1.0e3;
swi t ch(pAnal ogQut) {
case SI NE_QUT:
return PONER() / 2 + sin(K * pTine);
case RAMP_QUT:
if(pTime < 1.0e-3)
return PONER() / 1.0e-3 * pTine;
}
return KEEP_ VOLTAGE;
}

On_time_step()
void On_tine_step(double pTine);

VMLAB reportsthat the simulation time up to parameter "pTime" has been reached. Thisis
the place where to read voltages, logic values, etc.

VMLAB calculates automatically the simulation step in function of the microcontroller clock
speed, etc. A way to force atime-step by the user isto usethe REMIND _ME(..) function.

Tips

The response to this function at "pTime = 0" can be useful for certain kind of initializations,
since it isthe first time that input pins voltages/logic are known.

16

Example:

void On_tine_step(double pTine)

// ER S S R R Sk bk S R o

/1 IN_PIN nmust be declared as DIA TAL IN

LOE C nylLogi c;
if(pTime == 0) {
/1 First tinme that IN PIN value is known
nyLogic = GET_LOG C(I N _PIN);
} else {
}
}

On_remind_me()
void On_rem nd_ne(double pTine, int pData);

Response to aprevious |.F. REMIND_ME(..) call. On_remind_me(..) can hold as well
REMMID_ME(..) calls. Such technique allows producing simulation time ticks at a fixed or
variable interval for whatever purpose. The parameter "pData’ will hold the value passed in
the previous REMIN_ME(..).

Example:

void On_rem nd_ne(doubl e pTine, int pData)

// Rk Sk b S R kS Sk R R S S R S

/1 Atick every 10 ns

REM ND_ME(10. Oe-3); // A 10 ms tick
}

On_gadget_notify()

voi d On_gadget noti fy(GADGET pCGadgetld, int pCode);

This C.F. only applies to components with an associated window. The parameter pCode will
hold the Win32 notification code from the corresponding control; pGadgetid will hold the
control ID (GADGETO to GADGET31), as defined in the resources file (.RC). The use of
this function presumes certain knowledge of the Windows API.

Example:

17

voi d On_gadget noti fy(GADGET pCGadgetld, int pCode)

// khkkhkkhkhkhhhkhhhhhhhhhhhdhhhdhhdhhdddhddrdhrdrdrrdrrdrx*

/1 Exanple of button click based action. The button
/1 is identified as GADCGET1 in the RC file

i f (pGadget |d == GADGET1 && pCode == BN_CLI CKED) {
SET_VOLTAGE(QUT_PIN, 0); // Set OV on button click
}

}

On_update_tick()
void On_update_tick(double);

If defined, this C.F. isinvoked regularly every ~80 msec (approx), and it is intended to
refresh windows controls, etc, providing a half-standard animation rate (~12.5 times per
second). The actual simulation time is passed as a double parameter.

The major use of this function isto optimize the simulation, by refreshing controls at a
reasonable timing rate, in such way that the user perceives an animation effect, but the
simulation performance is not affected too much.

Notes:

» Thisnotification isreceived only if there is some window associated with the
component, and even during breaks.

» The elapsed time between two calls is approximate. This function should not be used
for accurate time measurement, nor to produce high quality animations.

Example:
voi d On_update_tick(doubl e pSi nmli nme)
{
i f(Val ue_changed_since_| ast_refresh) { /1 1f no need, no refresh
char myBuffer[32];
sprintf(nyBuffer, “Value = %”, Val ue);
Set W ndowText (GET_HANDLE(GADGET1), nyBuffer); // Refresh control
Val ue_changed_si nce_l ast _refresh = fal se;
}
}

18

Interface Functions Reference

BREAK()

voi d BREAK(const char *pMessage = NULL);
Forces the simulation to stop. The stop point will be the next microcontroller instruction

boundary. An optional message, "pMessage” parameter, can be displayed in the Messages
Window.

AsBREAK() will be effective in the next micro instruction, bear in mind that this can take
sometime if it isissued during the RESET phase.

Example:
void On_tine_step(double pTine)

//****************************

{

BREAK(" Stop here!"); // Request to stop the sinulation

GET_CLOCK()

doubl e GET_CLOCK();

Returns the actual microcontroller clock value in Hertz.

GET_DRIVE()
BOOL GET_DRI VE(PI N pPi n)

This function, an inverse of SET_DRIVE(), returns the current driving state for a pin or port:
‘true’ if it isan output, and ‘false’ in case of input.

Notethat its use is unnecessary in normal user components, since the DLL code must know
at any time, when a bidirectional pin is input or output.

However, in micro portsis different, since the input/output control may come from different
sources. See Part 11.

19

GET_HANDLE()
HWAD GET_HANDLE(i nt pGadget | d);

In a component with an associated window, gets the window handle corresponding to the
gadget ID "pld". "pld" must be one of the GADGETXx values (GADGETO to GADGET31),
which has been assigned to the standard Windows controls placed in the resource file.

Use this to execute Win32 APl commands in standard controls: ListBox, ComboBox, etc.
present in the component window. The use of this function presumes certain knowledge of
the Windows API. Example:

Even if the component has an associated window, GET_HANDLE() will return NULL if
called within the On_create() or On_destroy() C.F, in the first case because the window has
not yet been created, and in the second, because it has already been destroyed. A window
handle is available for the first time after On_window_init() notification.

// Add a string to a ListBox type control, identified

/1l in the resources file (.RC as GADGET5

/1

const char *nyString = "Hello Wrld";

HWAD | BoxHandl e = GET_HANDLE(GADGETS) ;

SendMessage(| BoxHandl e, LB _ADDSTRI NG, 0, (LPARAM nyString);

GET_INSTANCE()

const char *GET_I NSTANCE() ;
It retrieves the instance name as specified in the Project File (X<inst_name>).

Tip:
Use the instance name to pass a string type parameter to the component, to open a given
filename, etc. Example:

const char *On_create()
//*********************

/1 Opens a file passed by instance nane

{
if('M_file) {
char full Nane[32];
sprintf(full Name, "%.dat", GET_I NSTANCE());
My _file = fopen(full Nanme, "rt");
if(!'My_file) return "File does not exist";

return NULL; // Success

20

GET_LOGIC()
LOE C CGET_LCA C(PI'N pPi n);

It retrieves the logic value at a pin. "pPin" will contain a pin identifier previously declared as
DIGITAL_IN(..), DIGITAL_OUT(..) or DIGITAL_BID(..). The return value will be a
LOGIC type one, which can take values 0, 1 or UNKNOWN. Example:

DECLARE_VAR
unsi gned char RAM dat a[4096] ;
int Wite_ address;

END_VAR
void On_digital _in_edge(PIN pDi gl n, EDGE pEdge, double pTine)
//***
/1 ARAMw th falling edge wite-enable and wite address
/1 self-increase. Pins WEN, DI NO...DIN/ nust be decl ared!
/1 Unknown | ogi c values (X) not handl ed, nor other checking,
/1 like max address, etc,
{
if(pDigln == VEEN && pEdge == FALL) {
LOG C bit[8];
bit[0] = GET_LOCA C(DI NO);

bit[7] = GET _LOG C(DI N7):
unsi gned char byteVal ue = 0;
for(int j =0; j < 8; j+4+)
byt eVal ue = bytevalue * 2 + bit[j];

VAR(RAM dat a) [VAR(Wite_address)] = byteVal ue;
VAR(W i te_address) ++;

GET_PARAM()

doubl e GET_PARAM unsi gned | ong pl ndex) ;

It gets the user placement parameter with the given "plndex”, starting at 1. For example, if
this component is placed in the Project FILE (.PRJ) file like this:

Xinstl MComponent (3 4 5) nodel node2 node3
A call to GET_PARAM(2) will return the value 4.0 (type isdouble).

Any "plndex" for which the corresponding parameter does not exist, will return zero.

21

GET_VOLTAGE()

doubl e GET_VOLTAGE(PI N pPin);

It retrieves the voltage at the given pin (parameter "pPin") referred to VSS. Example

void On_tine_step(double pTine)

// EE R S Sk Rk kR Ik

/1 Exanmple of sinmulation recording in a file
/1 Log_file must have been open previously
/1 MY_PIN nmust be declared ANALOG I N

/1
{
double v = GET_VOLTAGE(MY_PIN);
fprintf(Log_file, "T =9%; V =%\n", pTinme, v);
}
POWER()

doubl e POVNER() ;

Get the power level value, as defined in the Project File (VDD — VSS).

PRINT()

voi d PRI NT(const char *pText);

It displays a message in the M essages Window. Use this function for debugging or
monitoring purposes.

Example:

void On_digital _in_edge(PIN pDi gl n, EDGE pEdge, double pTine)

//***

if(pDigln == CLK_ IN &% pEdge == RISE) {
PRI NT("Ri sing edge detected at pin CLK IN');
}
}

Caution!

Pay attention: the Messages Window could be flooded with messages, if PRINT(..) is not

properly controlled, mainly in high traffic callback functions, like On_time_step(..).

22

REMIND_ME()

voi d REM ND_ME(doubl e pDel ay, int pParam = 0);

It causes aOn_remind_me(..) callback function to be invoked after "pDelay" time in the
simulation with the optional auxiliary parameter "pParam”. This parameter can be used for
whatever purposes are required. Cast into "int" if you wish to pass another parameter type,
and cast back to the original type at On_remind_me(..).

Use this function to cause simulation time ticks defined by the component.
A On_remind_me(..) callback function can contain inside REMIND_ME(..) calls. Thiscan
be used to define aregular simulation time tick.

Example:

void On_sinmul ation_begin()

//************************

REM ND_ME(100. Oe- 6, 1);
}

void On_rem nd_ne(doubl e pTine, int pData)

//***************************************

PRI NT(" 100 sinmul ati on us have passed!");
REM ND_ME(100. Oe- 3, pData++); // pData = nr. of ticks

}

SET_DRIVE()
void SET_DRI VE(PI N pPin, BOOL plsCutput);

It applies to a bidirectional pin "pPin". SET_DRIVE forces the given pin to behave like an
output when the parameter "plsOutput” is "true".

Example:

voi d On_gadget noti fy(GADGET pCGadgetld, int pCode)

//**

/1 Changes pin input <-> output with a button
{
swi tch(pGadget1d) {
case GADGET1:
SET DRI VE(BI D1, true);
br eak;
case GADGET2:
SET DRI VE(BI D1, false);
br eak;

23

SET_LOGIC()
void SET_LOG C(PIN pPin, LOG C pVal ue, double pDelay = 0);

It applies a logic value in an output or bidirectional pin (if defined as output). The "pPin"
value must have been defined inside DECLARE_PINS as DIGITAL_OUT(..), or
DIGITAL_BID(..). The optional parameter "pDelay”, specifies the delay at which the logic
assignment must be performed. A zero value is assumed if not specified.

Example:

void On_sinmul ation_begin()
//************************

/1 Launches a serial signal over pin SER QUT.

/1 SER _QUT nust have been declared as D G TAL_ QUT.

{
const double BIT_TI ME = 100. Oe- 6;
char txByte = OxAl; // Byte to transmt
for(int j =0; j <8; j++) {
SET_LOd C(SER_QUT, txByte & 1, j * BIT_TIME);
txByte >>= 1; // shift
}
}

SET_VOLTAGE()

void SET_VOLTAGE(PIN pPi n, double pVal ue);

It causes a voltage to be set in an analog output pin. "pPin" will contain a pin identifier
previously declared as ANALOG _OUT. SET_VOLTAGE(..) causes sharp changesin the
pin over which it is applied. For a continuous-time analog signal use the callback function
On_voltage _ask(..).

Example:

void On_tine_step(double pTine)
//*****************************

/1 A digital to anal og conversion. Possible undeterm ned
/1 bits (X) read not handl ed!

{
LOG C bit[8];
bit[0] = GET_LOG C(1N0);
bit[7] = GET_LOG C(IN7);
i nt binValue = 0O;
for(int j =0; j <8; j++) {
binval ue = binvValue * 2 + bit[j];

}
SET_VOLTAGE(AQUT, POWER() / 255 * binVal ue);

24

TEMP()
doubl e TEMP();

Retrieves the simulation temperature in Kelvin degrees, as specified in the VMLAB
Control Panel. Use this function to model temperature dependant features.

Example:

void On_sinmul ation_begin()

//************************

/1 Sonme del ay val ue that changes with the tenperature

/1 and power |evel. TEMP() gives Kelvin deg. (not Cel sius!)
/1

VAR(Sore_del ay) = (KO + KL * TEMP()) / (K2 * PONER());
}

TRACE()

voi d TRACE(BOOL pEnabl e);

This function is a debug oriented feature. After it has been called as TRACE(true), VMLAB
will display in the Messages Window all the Callback Functions and Interface Functions,
displaying the relevant parameters. To stop tracing, call the function again with "pEnable"
false.

Use this function with care, since it can flood the Messages Window.

Example:

void On_simul ation_begin()

//***********************

/1 Trace the first 10nms of sinulation
TRACE(true);

}

void On_tine_step(double pTine)

//*****************************

/1

i f(pTime > 10.0e-3) TRACE(fal se);

25

The Utility "usercomp.exe"

General overview

Thisis an stand-alone utility that can be run either invoking it directly, or from VMLAB:
"Components | Create New" command. It location is
"<VMLAB_install_dir>\bin\usercomp.exe".

It provides the following functionality:
* Automatic creation of basic files: C++ source and RC resources file, based on a
graphical interface.
» Two tab-based standard editors for the C++ the RC files.
* Automatic Win32 command-line tool spawning, with errors reporting in an included
Messages Window.

» User-configurable Win32 toolkit and command-line. Default behavior isto use
BCC55.

This utility if designed to develop VMLAB user-defined components, specially for non-
Windows programmers, but it use is optional: you can use any market ssandard Win32

IDE: (MS .NET, VC++, Borland C++ Builder, etc.). Just compile and link your component
source code asaDLL not as EXE.

i YMLAB User Components Builder (usercomp.exe)

Iglatlpen @% Save El Compile &E\ear ? Help ? C+ J='|_Ex|l I ame: my_cell 1 modified

Create new l C++ code: my_cel\.cpp] Rezources file: my_cel\.lc] Compiler settmgs} About 1

This componert is: Target DLL file: [C:vMLABwwseribimy_cell di
" Amicro peripheral & Other component
Browse
Fin/register names. They must be valid C++ identifiers. '‘Write one per line -

Analog ping Digital pins Micro peripheral
Input Output Input Output Bidirectional Poit signals Registers Interupts

D1 Cut

Dz

D3
Haz thiz component an associated window? Generate C++ headers for v Generate comments
L ai= R ¥ Generate placement ternplate for Project or [N files
* No " Borland VCL

Generate and load C++ and RC template files ‘

If your companent has no associated window, just ignore the resouces file [RC): leave as it is |

and instance name by actual names
HeinscName= _my_cell(<paraml>, ...)} =Dl» =D2> <D3» =<0uc>

Generated basic Win3z2 C++ and resource filez. Seededit them in the cormesponding tabs

To create new basic template files for anew component, the "Create new" tab asks the user:
* Thel/O pin names.

* If thiscomponent has an associated control window or not.

» Thekind of Windows headers to be produced: Win32 SDK, or VCL. Use VCL only
if you will compile the code with Borland C++ Builder IDE.

26

Once all these data have been filled in, click the button " Generate and load C++ and RC
basic files', and automatically, the application will generate two files, and will load them in
two text editor windows.

A C++ codefile.

* A .RCfile (Win32 resourcesfile).

Theresourcesfile (RC)

If your component has no associated control window, just ignore the RC file and leave it like
is generated; the binary space overhead for this feature is negligible. If you intend to design a
control window to be loaded in VMLAB, arrange the RC file, placing the controls according
to your needs. Do not modify the main window width; it must fit into VMLAB Control Panel
fixed dimensions. It is highly recommended to use some graphical Windows resources editor
for thistask, although you can do it with the text editor, modifying the control coordinates.

In Windows, every control is identified by alD number. The "blackbox.h" file provides a set
of values to be used: GADGETx (GADGETO0 to GADGET31). If another naming is
necessary for your code readability, do it like this (example):

#define GO BUTTON GADGET1 // | prefer name GO BUTTON !

Use then the "Compile" command to run the selected Win32 toolkit. Errors will be reported
in a special Messages Window. Once all is error-free, your DLL isready to load into a
VMLAB project.

The following picture represent the default window corresponding to the default RC file
generated by "userelem.exe". The C++ code must specify the main window dialog ID:
WINDOW_USER 1:

i Control Paga o ENGIET]

L d:-‘usersiblackboxmy_idea. pr * M=] E3
Speed: 4| " =

Temp: 4| v| Xuserz _NEWCELL (20 100) winZ foutl =

Clock; j_r

Micra [dd:

rl ¥Dp0 Dinl 1E

51 52 &3 k. ingtances
—J Izer component: MEWCELL.DLL, ingtance: LUISERZ

Button 1 I Buttan 2 | | A ﬂ

B
[~ Check box

C =
ﬂ todifiable text
j Fixed text J— IEnter bet

USE_W NDOW W NDOW USER 1); // Wndow specification in C++ code

27

Debugging components

The "userelem.exe" does not provide source debugging features. To debug your DLL at
source level it is needed some Win32 | DE/debugger.

However, most of the times the included debug oriented functions and features can result
sufficient to achieve a successful development. Following isasummary:

* PRINT(..), to display variable values or other kind of messagesin VMLAB
Messages Window.

* BREAK(..) To stop the simulation.

* TRACKE(..), To get adetailed trace of every Callback and Interface functions.

» Exception handling for Callback Functions. If by mistake, you cause an access
violation, division by zero, etc. in your DLL code, VMLAB won't crash, but will
display a message indicating the function responsible for that fault.

The VM LAB command " Project | Unload components’

Win32 linkers prevent the generation of agiven DLL, issuch DLL iscurrently in use by
some application, thereforeit is necessary to insure that no user-component DLLsare
loaded by VM LAB before attempting to re-build new ones. The DLL load/unload process
it isautomeatically performed by VMLAB upon Project File parsing / modifying, but
however, it may be useful to force the unload of user-defined components. Use then the
command "Project | Unload components' (Ctrl + U).

Optimizing performance

Here are some advices that will help to optimize the simulation speed:

* Do not define C.F. if you do not use them, especially those oneswho are called in
every time step, like On_voltage ask(), or On_time_step(). If such functions are
present in your DLL, VMLAB will call them, with the corresponding execution
overhead.

* Usethe PRINT() message for debugging or special purposes. Thiswill slow down
the simulation and will also overload the system memory, if used at every simulation
step: messages are stored in the Messages Window.

» Useof On_update tick() for Windows Controls update. Note that updating a visual
control faster than the human eye can follow, makes no sense, causing a simulation
time waste.

28

A Crash course on Win32 controls

Just if you don't know anything about Windows programming, but you want to implement
some simple window-based component. See below some examples of common basic tasks.
For a complete reference, see: http://msdn.microsoft.com/library/default.asp

The basics. Windows controls handling is based in a set of constants defined in
<windows.h> or <commctrl.h>. Such constants are classified in 3 types.
» Styles, to be placed in the RC file to determine some variations/styles in the control.
* Messages, to request actions to controls, sending a Windows standard message.
* Notifications, when the control has something to say: a status change, etc.

Detecting a Button click or CheckBox change. At On_gadget_notify(..) :
i f (pGadget == GADGETx && pCode == BN_CLICKED) { ...

Setting atext. Thisisvalid for Static and Button controls:
Set W ndowText (GET_HANDLE(GADGETx), "This is my text");

Reading Edit controls. Also valid for Static and Button:
char buffer[LEN]; // Preview a maxi mum | ength
Get W ndowText (GET_HANDLE(GADGETx), buffer, LEN - 1);

Detecting changesin Edit controls. At On_gadget notify(..):
i f (pGadget == GADGETx && pCode == EN CHANGE) { ...

Setting TrackBar range limits. Variables myMin, myMax: 16 bits integers.
HWAD handl e = GET_HANDLE(GADGETX) ;
SendMessage(handl e, TBM SETRANGE, true, MAKELONG nyM n, nyMax));

Detecting movement in a TrackBar. At On_gadget_notify(..) :
i f (pGadget == GADGETx && pCode == TB_THUMBTRACK) { ...

Reading the TrackBar slider position. Within the specified range.
i nt pos;
pos = SendMessage(GET_HANDLE(GADGETx), TBM GETPCS, 0, 0);

Filling aListBox. Thiswill add a string. Consider if the list style is sorted or not.
int pos; // WIIl return the index, zero based.
pos = SendMessage(GET_HANDLE(GADGETx), LB_ADDSTRING 0, "M/ text");

Detecting adouble click selection in aListBox. At On_gadget_notify(..):
i f (pGadget == GADGETx && pCode == LBN DBLCLK) { ...

Setting range limitsin a ProgressBar. Variables myMin, myMax: 16 bits int.
HWAD handl e = GET_HANDLE(GADGETX) ;
SendMessage(handl e, PBM SETRANGE, 0, NMAKELPARAM nyM n, nyMax));

Setting the valuein a ProgressBar. Variable myPos is in the specified range.
SendMessage(GET_HANDLE(GADGETx), PBM SETPCS, nyPos, 0);

29

Code sample #1: a voltage-to-frequency converter.

This code, V2F.CPP, correspond to the component V2F.DLL, located in
<VMLAB _ingtall_dir>\userlib.

#i ncl ude <wi ndows. h>

#i ncl ude <comcttrl. h>

#pragma hdr st op

#i nclude "..\bin\bl ackbox. h"

int WNAPI Dl I EntryPoi nt (H NSTANCE, unsigned |ong, void*) {return 1;}

DECLARE_PI NS

ANALOG I N(VIN, 1); /1 Vol tage i nput

DI A TAL_QUT(FQUT, 2); // Frequency out put
END_PI NS
DECLARE_VAR

doubl e Average v; // To keep average read voltage

doubl e K1, 11

doubl e K2; /1 Qut freq(Khz) = K1 + K2 * Average_ V
END_VAR

USE_ WNDOWO0); // If window USE W NDOW W NDOW USER 1) (for exanpl e)

const char *On_create()

{
const char *errorMessage = NULL;
i f(GET_PARAM 1) < 0.001)
error Message = "M ni num frequency is 1Hz";
el se
VAR(K1) = GET_PARAM' 1) * 1000.0; // Pass to Hz
i f(GET_PARAM 2) <= 0 || GET_PARAM 2) > 1000)
error Message = "lnvalid frequency coefficient"”;
el se
VAR(K2) = GET_PARAM 2) * 1000. 0;
return errorMessage;
}

void On_destroy() { /* No action */ }

void On_sinmul ation_begin()

{
SET _LOd C(FQUT, 0); // Initializes output
}
void On_tine_step(double pTine)
{
VAR(Average_v) = (GET_VOLTAGE(VIN) + VAR(Average_v))/2;
if(pTime == 0)
REM ND_ME(0.5/ (VAR(K1) + VAR(K2) * VAR(Average V)));
}
void On_rem nd_ne(doubl e pTine, int pData)
{

SET_LOG C(FOUT, TOGGLE);
REM ND_ME(0. 5/ (VAR(K1) + VAR(K2)*VAR(Average Vv))):

Code sample #2: a interactive event counter

This code, "counter.cpp”, correspond to the component "counter.dll”, located in
<VMLAB ingtall_dir>\userlib.

#i ncl ude <wi ndows. h>

#i ncl ude <comcttrl. h>

#pragma hdr st op

#i nclude "..\bin\bl ackbox. h"

int WNAPI Dl I Ent ryPoi nt (H NSTANCE, unsigned |ong, void*) {return 1;}

DECLARE_PI NS
DIGTAL INCSIGIN, 1); // Signal input
END_PI NS

DECLARE VAR // Initialized to zero at creation.
unsi gned | ong Count;
unsi gned | ong Break count;
bool Count _on_ri se;
bool Count _on _fall;
bool Break_if_equal;
END VAR

USE_W NDONM W NDOW USER 1); // Dialog identifier fromRC file

const char *On_create()
//********************

VAR(Break _count) = 64; // To match initial GADGETS5 (EditBox) val ue
(arbitrary)

return NULL; // OK
}

void On_destroy() { /* No action */ }
void On_sinulation_begin() { /* No action */ }

void On_digital _in_edge(PIN pDigitalln, EDGE pEdge, double pTine)

//**
/1l Process edges on pin SIGIN
{
bool must Count = fal se;
if(pDigitalln == SIGIN {
i f (VAR(Count _on_rise) && pEdge == Rl SE)
must Count = true;
el se i f(VAR(Count _on_fall) && pEdge == FALL)
must Count = true;

if(mustCount) { // Increase and refresh 'Static' type control GADGET2
char myBuffer[32];
i toa(++VAR(Count), nyBuffer, 10);
Set W ndowText (GET_HANDLE(GADGET2), nyBuffer); // See Wn32 API
i f(VAR(Break_if_equal)) {
i f (VAR(Count) == VAR(Break_count))
BREAK(" Count er reached break val ue");

} }
voi d On_gadget noti fy(GADGET pCGadgetld, int pCode)

//**

31

switch(pGadgetld) { // Button click notification: BN _CLI CKED
case GADGETO: /[l ---- "Count on rise" select ----
i f(pCode == 0)
VAR(Count _on_rise) = I'VAR(Count_on_rise);
br eak;

case GADGET1: // ---- "Count on fall" select ----
i f(pCode == BN _CLI| CKED)
VAR(Count _on_fall) = I'VAR(Count _on_fall);
br eak;

case GADCET4: /[l ---- "Break if equal" ----------
i f(pCode == BN_CLI CKED)
VAR(Break if_equal) = !'VAR(Break_ if_equal);
br eak;

case GADCETS: [l ----- "Clear" button ------------
i f(pCode == BN _CLI CKED) ({
VAR(Count) = O0;
Set W ndowText (GET_HANDLE(GADGET2), "0");
}

br eak;

case GADCETS5: // Holds the break value. Must detect changes
i f(pCode == EN_CHANGE) ({
char myBuffer[32];
Get W ndowText (GET_HANDLE(GADGET5), nyBuffer, 32 - 1);
VAR(Break _count) = atoi (nyBuffer);
}

br eak;

32

Part Il : AVR™ Microcontrollers and
Peripherals Programming Interface

Scope & prerequisites

This pat of the manual is oriented to VMLAB users who wish to code any AVR
microcontroller not supported internally by VMLAB.

VMLAB, up to release 3.14, includes internal models of several AVR micros, however, this
new feature supported from release 3.15 on, allows users to code new family members, even
if no internal VMLAB model is available.

Prerequisites

» A deep knowledge of the involved micro and peripherals to be developed.

* A basic understanding of the VMLAB user-defined components coding mechanism,
described in Part |. The procedure for micro-peripherals development is the same,
with some new Callback and Interface functions (C.F. and |.F.).

» Clanguage and basic C++.
» A basic understanding of the Win32 controls and resources.

User-defined AVRS

A user-defined AVR model consists of:

* A Windows.INI file, for example, “ATMega777.INI”. The Project File will use the
name “ATmega777" inthe .MICRO directive. INI files are a Windows standard type
of text files, used to configure applications, etc. In this case such file will determine:

[olNolelNe]

(@)

o

The micro atributes: RAM, Flash, EEPROM, etc

The supported instructions

Description of the interrupt vectors, flags, etc.

Description of the built-in peripheral, making reference to internal VMLAB
models or an external DLL based user-mode.

Description of the special registers implementing additional features.
Description of the supported fuses, etc.

* Thenecessary DL Lsreferred in the above mentioned .INI file, in a DLL-per-
peripheral basis. The code for such DLLs follows a similar structure as the user-
defined components (see Part |) In addition, the utility “usercomp.exe” can also
createthese DLLs.

33

All thefiles (.INI and DLLs) must be placed in a the following directory:
<VMLAB install dir>\mculib>

To load a user-defined micro, there is no special action: just write the model in the Project
File .MICRO directive:

. M CRO “ATMEGA777”

VMLAB will seek first for the ATMEGAT777.INI file in the <mculib> directory; if not found,
it will try to search for an internal model with this name. Therefore, modelsincluded in the
<mculib> directory overrideinternal VM LAB models with the same name.

The .INI file

Overview

Windows INI files are standard text files used by Windows for parameters settings,
applications configuration, etc. A INI file consist of several sections named with square
brackets, and within each section, there can be defined parametersin the form Name=Value,
with either numeric or aphanumeric fields, like:

[MY_SECTI ON|

My_paraneter_1 = 256 ; A semicolon is interpreted
My_paraneter_2 = a string ; as a conment up to the line end
[OTHER_SECTI ON|

My_paraneter_1 = 254

My_paraneter_2 = other string

O her _paraneter =7

The AVR micro definition uses these two sections/parameters concepts. Note that a full
description of all the optionsisnot provided here, since the given examples are self-
explanatory, including many comments; therefore, this document outlines just the basic
structure of aAVR INI file.

The [AVRCORE] section is the base for the rest of the .INI file. Parameters as the flash size,
supported instructions, stack size, etc. must be defined in this section.

[AVRCORE]
Fl ash_size k = 8 ; Flash size, etc
RAM si ze = 1024 ; See exanple for conplete details

EEPROM si ze = 512
Vector _size =1

Support | JMP = yes ; Some instructions are not supported
- inall mcros

Within the [AVRCORE] section there are some special parameters with the naming style
‘Xxxx_list’, referring to alist of interrupts, peripherals, etc. Such parameters are a comma
Separated text list:

Interrupt _list = “INTO, INT1, ...

Peri pheral _|ist = “TIMERO, TIMER1, UART,
Port_8 list = “PA PB,

QG her_pin_list = “AREF, ADC6, ADC7”
Debug_pin_list = “TOVFO, TIMVIEW

Flag register_list = “AFR TIFR
Mask_register_list = “ACR Tl MK,
Fuse_list = "CKSEL, SUT, ”

For each of the above lists, there must be its corresponding section with the additional
details, named with the involved list prefix. Example, [Mask_register: TIMSK] .

Ports

The generic port list must be defined in *Port_8_list’. For each of the ports included in such
list, a special section hasto be defined; for example:

[Port _8: PC|
Exi st _mask = $7F ; PC7 does not exist for this port
Regi ster _map = "DR=$35, DDR=$34, PI N=$33"

* The'Exists mask’ specifies which bits exist for the port.
* The'Register_map’, specifiesthe DR, DDR and PIN addresses.

Additional pins

The parameters ‘Other_pin_list’ and ‘Debug_pin_list’ identify the additional stand-alone
pins, which are not sandard micro ports. Such pins can be real non-port pins (Other_pin_list)
or auxiliary/virtual onesthat can serve a variety of functions. monitoring, debugging, etc
(Debug_pin_list)

The corresponding electrical nodes with the names given in the list will be created; both kind
of extra-pins have exactly the same functionality; the only difference is the icon which
identify them in the * Messages Window | Electrical Nodes' section.

Interrupt flag and mask registers

The interrupt list, defined in ‘Interrupt_list” parameter, must follow the order established in
the AVR manual, excluding the RESET. Interrupts with some special treatment need a
gpecial section; in such section, it is possible to define the initial reset status, etc.

[nterrupt: UART_UDRE] ; UART Data Register Enpty
Reset _status =1

Peripherals definition
Peripherals defined in ‘Peripheral _list’” must be detailed in a separated section, for example:

[Peripheral : TI MER1]

;I nternal _nodel = TI MERL6 ; internal VMLAB 16 bits tiner nodel
DLL nmodel = ny_tinmerl dll ; In this case is a DLL nodel
Version =1

Regi ster _map = "TCCRA=$4F, TCCRB=$4E, TCNTH=$4D,

35

Port_map = "OCA=PB1, OCB=PB2, |CP=PBO, T1=PD5"
Interrupt _map = "ocl=COWPAl, ovfl ow=0v1”

Peripheral definition sections need the following parameters:

* AfInternal_model’ or ‘DLL_modéel’ specification. This sayswhat model to usein
the simulation. For internal VMLAB models/versions see the list in the annex of the
provided INI example.

* A ‘Register_map’, indicating the associated registers and their addresses. Registers
defined here must correspond with the ones declared in the the DLL code
DECLARE_REGISTERS, and must follow the same declaration sequence.

* A ‘Port_map’ (optional) if the peripheral has some associated ports, indicating the
function name and associated port. Ports defined here must have its counterpart in the
DLL DECLARE_PINS (MICRO_PORT())

e ‘Interrupt _map’, indicating the interrupts (defined in ‘ Interrupt_list") that are
handled by the peripheral, and must be referred as well in the DLL code by the
DECLARE_INTERRUPTS macro.

* A ‘Version' number (optional) indicating the version for a given model. This
parameter can be retrieved in the DLL with the VERSION() I.F.

Fuses

Fuses definition involve three parameters: ‘Bit_position’, ‘N_of bits and ‘Default_value
(1 means unprogrammed). It is recommended to use binary values (beginning with b) to
describe fuses. Example:

[Fuse: CKSEL]

Bit_position =0 ; Start position for CKSELO

N of _bits = 4 ; CKSEL3, CKSEL2, CKSEL1, CKSELO
Def aul t _val ue = b0001 ; CKSELO = 1 (unprogranmed)

Note that the ‘ Default_value' can be overridden later in the Project File, by assigning the
desired value, like:

.M CRO "At nega8" "CKSEL=0000" ; Al bits programmed

Special purposeregister handling. The DUMMY Peripheral

The AVR family uses a common architecture and basic instruction set, with some variants
depending on the family member. These features are supported in the [AVRCORE] section.

However, some more complex features, like external interrupts selection, etc. require a

special process depending on the AVR model, and therefore to code them in a special DLL,
as an additional “pseudo-peripheral”, the so-called DUMMY peripheral.

36

There isa special section [Peripheral: DUMMY] which does this job, with similar
parameters as an standard peripheral:

[Peri pher al : DUMWY]

Regi ster _map = " SFI OR=$50, OSCCAL=$51"

Interrupt _map = "External 0=l NTO, External _1=IN1"

DLL _nmodel = ny_dummy ; to be processed in “ny_dumy.dll”

If no DLL isspecified in ‘DLL_model’, such registers will be considered just as normal r/w
registers (plain RAM), with no special add-in process associated.

ThisDUMMY Peripheral DLL follows the same structure asthe peripheral one, with the
only difference that it responds to some special callback function.

Coding micro-peripheral DLLs

Overview

Coding DLLsfor AVR peripherals modeling or special purpose register handling follows the
same methodology as coding user components: it is based in callback functions (C.F.) and
interface functions (I.F.). See Part | for a complete description.

The " blackbox.h" header file

The source code (.cpp file) for coding peripherals or special register handling, must include
the same “blackbox.h” file as in the user-defined component (see Part |); just a special
#define must be included before. Three variants are possible now in the source code header:

1) Normal user-defined component:
#i ncl ude <bl ackbox.h> // A user-defined conponent
2) Micro peripheral:

#defi ne | S PERI PHERAL /1 This will indicate that the DLL is not
#i ncl ude <bl ackbox.h> // a user-conponent, but a mcro peripheral

3) DUMMY peripheral:

#define 1S DUVMY_ PERI PHERAL /1 This will indicate that the DLL is
#i ncl ude <bl ackbox. h> /1 the DUMW peri pheral

Compatibility: only release >= 3.15. A DLL so compiled, used with some earlier

VMLAB release, will give an error message. However, VMLAB 3.15 accepts DLLsS
compiled for previous releases (only for user-defined components)

37

New C.F. and | .F.

All the Callback and Interface Functions available for user components are also available for
peripherals definition, with the following exception:

GET_PARAMETER() // Not avail able for peripherals, use VERSIO\() instead

In addition, the peripheral definition involves some new C.F/ I.F. described later in this
document.

Handling 1/O ports. The AVR VM LAB port model

AVR ports share several functions each (1/0Os, UART signals, ADC channels, etc). An
accurate simulation behavior for such features is quite challenging, since reproducing at
100% such functionality would require a full port hardware model, leading to a very time
consuming simulation.

DR
UART
PORT
TIMER ONLY AN OWNER AT A TIME

The TAKEOVER_PORT/() function is the one implementing such capability. If aDLL
model wishes to assume the port ownership as output, it must invoke this function, which
returns a success/fail code for the operation.

The following code could be used in response to a peripheral register bit change:

int portStatus = TAKEOVER PORT(PAO, true); // Want to be the owner
i f(portStatus == PORT_CK) {.

/1 1 am the owner
} else {

/1 Analyze return code, give warni ng nessage if necessary

}

TAKEOVER_PORT(PAO, false); // Release port

See a complete description of TAKEOVER_PORT() in the |.F. reference section.

38

Handling 1/O ports. Port declarations

The DECLARE_PINS/ END_PINS section allows now a new macro to identify micro ports.
In the current release, peripherals cannot contain additional analog/digital pins other than
ports. Ports must be defined in the same sequence as used in the .INI file “Port_map” section
for agiven peripheral:

Port_map = “OCOA=PAO0, OCOB=PB2” ; In .IN file
DECLARE_PI NS

M CRO PORT(OQ0A, 1); [/ CQutput conpare A

M CRO_PORT(OCOB, 2); [/ B
END_PI NS

The DLL does not care about actual port assignments (PAX, PBX, etc). Thisinformation is
only supplied in the .INI file ‘Port_map’, allowing the use of several instances of the same
DLL, associated to different port sets.

Handling 1/O ports. Additional pins

Additional pins (analog, digital, etc) can be defined in the DECLARE_PINS in the form
explained in Part |. Such non-port pins have to be declared as well in the INI file as
previously indicated (Other_pin_list / Debug_pin_list)

For example, pins for an ADC model that uses 2 standard ports + 2 extra pins (4 channels)
would be written like thisin the DLL:

DECLARE_PI NS
M CRO_PORT(A0, 1); /1 Port shared channel s
M CRO_PORT(A1, 2); /1

ANALOG | N(A2, 3); /1 Stand al one channel s, non-port
ANALGOG | N(A3, 4); /1
ANALCG | N(v_REF, 5); /1 A voltage reference pin

END_PI NS

Then, inthe INI file, there must be a declaration for the extra ‘non-port’ pins, together with
the ‘Port_8 list’:

Port 8 list = “PA PB, PC ; Ceneric ports
O her_pin_list = “AREF, ADC2, ADC3,. . .” ; Standal one pins

The assignment from the DLL sequence to the actual ports/pins has to be done in the
corresponding ‘Port_map’ for such ADC peripheral:

[Peri pheral : MY_ADC]|

Port rmap = “A0=PBO, Al=PBl, A2=ADC2, A3=ADC3, Vv_ref =AREF"

39

Handling 1/O ports. Retrieving logic / analog signals

No special functions apply for these tasks. The standard I.F. GET_LOGIC() and
GET_VOLTAGE() also work with ports. See the User Defined Components Manual.

Handling 1/O ports. Port change notifications

In order to implement features like external interrupts, timers input capture, external clocks,
serial peripherals, etc, it is necessary to process port change notifications. The C.F. managing
this feature is On_port_edge().

There are two different versions of the same function, depending on the type of peripheral
code: the DUMMY one (only one instance), or any other (TIMER, etc) normal type. The
reason for thisisthe fact of port mapping. Asthisis not allowed inthe DUMMY peripheral,
the original port node name (“PB2", “PD4”, etc) must be handled directly by the callback
function.

In anormal peripheral (#define|S_PERIPHERAL)

void On_port_edge(PORT pPort, EDGE pEdge, double pTine)

//**

/1 A external clock based counter. TO defined as M CRO PORT

i f(pPort == TO && pEdge == RI SE) Count er ++;

Inthe DUMMY peripheral (#definelS_DUMMY _PERIPHERAL)

void On_port_edge(const char *pNane, int pBit, EDGE pEdge, double pTine)
p

// khkhkkhkhkhhhkhhhhhhhhhhhdhhhdhhdhhdhdhhddhdhdhdhrhdhhhdhhhdrhddhddrdhddrdddrdrrdrddxx

/1 A external interrupt com ng from PD3

{
i f(strcnp(pNanme, “PD’) == 0 & pBit == 3 && pEdge = Rl SE)
SET_I NT_FLAG | NTO, FLAG SET);

Handling registers. The WORDS8 data type

VMLAB codes al the internal hardware registers or data with the possibility to have three
logic states: 0, 1 or X (undefined). Thisinsures atop quality simulation, catching situations
where non-initialized variables, RAM, etc, can lead to nasty bugs, difficult to find out
otherwise.

In order to implement this feature, it is available a special data type, WORDS, coding a8

bits variable in which each bit can be 0, 1 or X. Thisdatatype is implemented as a C++ class
inside the “blackbox.h” header file. Example:

WORD8 Regi sterl, Register2; // Bits can be 0, 1 or X here

40

WORDS8 declared variables can be and-ed, or-ed, x-ored, and complemented with other of
same type or int/char, or assigned to standard integer or char types

WORD8 myResult = Registerl & Register2; // This is K
WORD8 nyData = 7; /1 This is K

In addition, the WORDS class provides the following bit or bit field setting/extracting
functions:

The LOGIC get_bit(int bit) function extractsasingle bit asaLOGIC typevalue. The[]
operator does exactly the same function in a WORDS type variable.

Theint get_field(int msb, int Isb) function provides a bit field extraction specified by MSB
and L SB parameters, with the result shifted to the bit-O position. If any bit in the specified
field is unknown (X), thereturnis-1. This function is particularly useful for extracting the
different bit groups, which define a micro peripheral behavior.

Thevoid set_bit(int bit, LOGIC logic) function sets the given bit to a LOGIC type value.

Examples:

WORD8 nyData = Ox3A; /1

LOE C the3rdBit = nyData.get_bit(3); // Extracts 3rd bit, or ..
the3rdBit = nyData[3]; /1 .. [] operator does the sane
nmyDat a. set _bit(4, 1); /1l Sets 4th bit to value =1

int bits7 5 = nyData.get _field(7,5); // Value of bits 7 to 5

Note for C users: Te above syntax isreally C++, not C. The source code implementing the
WORDS8 type is available at the “blackbox.h” header file.

Handling registers. Declatation and mapping

In order to write the code for aDLL model, it is necessary to distinguish three different
concepts for any related data register:

-Theregister ID code. Thisisan integer index variable starting at zero (enum type
REGISTER _ID) that VMLAB usesto identify registersin On_xxx() parameters. ID
codes must follow the same sequence as the declared in the .INI file corresponding
section’s ‘Register_map’

- Theregister data. It is WORDS type variable.

- The Windows resour ce code for the window display (.RC file).

Usethe DECLARE_REGISTERS/ END_REGISTERS macros to declare the registers
associated with a peripheral. The sequence must be the same asinthe INI file:

Regi ster_map = “TCCRO=$41, TCNT0=$42, OCROA=$43" ; in .IN file
DECLARE_REG STERS /1 in DLL source .cpp file

TCCRO, TCNTO, OCROA /1
END_REGQ STERS /1

41

Note that in thisway, the DLL does not care about register addresses. This information is
only supplied inthe INI file ‘Register_map’, allowing the use of several instances of the
same DLL, if needed.

Use the REG() macro to handle any register declared within DECLARE_REGISTERS/
END_REGISTERS block. REG() returns a WORDS datatype. Registers are actually
handled as a WORDS8 type array (see “blackbox.h” source for details)

REG TCCRO) = O;
WORDS8 r egi st er Copy = REG TCCRO) ;

Handling registers. Display

Registers declared DECLARE_REGISTERS, can also be displayed in the peripheral
dedicated window. In order to do this, there must be a.RC resource identifier (GADGETX)
associated to each register. Usethe REGISTERS VIEW / END_VIEW block to this
purpose, and to define individually each bit name, which will show up when the mouse is
over the bit. The DISPLAY () and HIDDEN() macros will perform the ID_REGISTER
mapping to a.RC identifier and bit names:

REG STERS_VI EW
11 I D . RC bit7 . . . bitO

DI SPLAY(TCCRO, GADCET1, FOCOA, F(I:OB *, %, WGW2, CS02, CS01, CS00)
DI SPLAY(TCNTO, GADGET2, *, *, *, * * x % *)

H DDEN(OCROA) // This register won’'t be displ ayed

END_VI EW

Registers declared in DECLARE_REGISTERS must aso appear in the REGISTER_VIEW
block, either with DISPLAY () or HIDDEN() macros, otherwise they will be considered as
plain RAM, and no notifications (On_register_read/write) will occur for such registers. This
situation will cause a warning message.

Handling interrupts
Declare the interrupts used by a peripheral with the DECLARE_INTERRUPTS/

END_INTERRUPTS macros, with the identifiers that will refer to such interruptsin the

code. Identifiers must be valid C/ C++ names.
DECLARE_| NTERRUPTS

Overfl ow, ConpA, ConpB /1 Declare interrupts here
END_| NTERRUPTS

SET | NTERRUPT_FLAG Overfl ow, FLAG SET); /1 Usage exanpl e

42

The mapping from such namesto actual AVR interruptsis handled by the ‘Interrupt_map’
parameter in the INI file, following the sequence order. For the above example, assume
that the INI file contains:

[AVRCORE]
Interrupt list = “...COWPAL, ... COWPBL, ... OVFL”

tPéri pheral : TI MERL]
DLL _nmodel = “ny_tinmer_nodel” ; code defined in ny_timer_nodel.dll
Interrupt _map = “Overf=0vFl, Cmp_A=COVWPAl, Cnp_B=COWPB1”

Then, the DLL code identifier ‘Overflow’ will refer to the ‘OVFY’ interrupt; the ‘CompA’ to
‘COMPAYL’ and the ‘CompB’ to the‘COMPBY’ interrupt. Note that parameter names are
ignored (‘Overf’, ‘Cmp_A’ and ‘Cmp_B’) and must not necessary match the DLL C ones,
since the assignment is perforemed by the sequence order. Its presence is just for better
readability, and therefore, it is recommended to use the same names as in the C code.

This approach allows multiple peripherals placement, where more instances of the same DL L
timer, for example, would use a different interruptsregisters set.

Callback Functions Reference

New Callback Functions

The following list contains the new functions for DLL peripheral coding, in alphabetical
order, note that besides, all of the Part | functions are also available, with the exception of
GET_PARAMETER().

voi d On_cl ock_change(doubl e pVal ue);

int On_instruction(int pCode);

void On_interrupt_start (I NTERRUPT_ID plnt);

void On_notify(int pWhat);

void On_port_edge(PORT, EDGE, double);

void On_port_edge(const char *, int, EDGE, double pTine);
WORD8 *On_regi ster_read(REG STER I D);

void On_register_wite(REA STER | D, WORDS) ;

void On_reset(int pMode);

void On_sl eep(int pMode);

43

On_clock_change()

voi d On_cl ock_change(doubl e pVal ue);

VMLAB notifies that a clock change has occurred, either due to some SET_CLOCK()
function, or by a manual clock change in the Control Panel window.

Peripherals whose behavior depends on supplied clock must handle this CF, like UARTSs
who will have to update the baudrate, or give a convenient warning, etc.

Example:
voi d On_cl ock_change(doubl e pvalue) { // Sone peripherals

.Updaf e_baudr at e(pVval ue); /1 Must handle this C F.
}

On_instruction()
int On_instruction(int pCode);

VMLAB notifies that some instruction that needs special handling is being executed. This
C.F. isintended for the use in the DUMMY peripheral to code the behavior of some
instructions dependant of some register contents, whose operation mode is not constant
among the AV R family members.

The parameter ‘pCode’ contains a special instruction 1D code. In the current release,
VMLAB notifies three special instructions with the following codes: INSTR_SLEEP,
INSTR_SPM and INSTR_WDR

The return must be an integer that will specify the result action, and it will depend on the
instruction:

* Return codesfor INSTR_SLEEP

o SLEEP _DENIED To deny entering in sleep mode
SLEEP_EXIT, To indicate the end of sleep mode
SLEEP_IDLE To enter in such sleep modes
SLEEP _NOISE _REDUCTION
SLEEP_POWERDOWN
SLEEP_POWERSAVE
SLEEP _STANDBY

OO0 0O0OO0O0

* Return codesfor INSTR_SPM
o SPM_WRITE BUFFER To write the temporary buffer
o0 SPM_ERASE PAGE To erase the flash page
o SPM_WRITE_PAGE To write the flash pag

* Return codesfor INSTR_WDR
o Ignored, canbe O

Example:

int On_instruction(int pCode)

//***************************

/1 Some DUMWY peripheral code draft. Actions depend on the rel ated
/] registers contents

i f(pCode == INSTR_SLEEP) { /1 ldentify instruction.
i f(MCUCR reg[SPE] == 1) { /1 Check bit in MCUCR
return SLEEP_ | DLE; /1 Allow sl eep
el se
return SLEEP_DEN ED, /1 Deny
} else if(pCode == I NSTR_SPM ({
}

On_interrupt_start()
void On_interrupt_start (I NTERRUPT_I D pld);

This C.F. notifies that the interrupt service identified in ‘pld’, which must have been defined
at DECLARE_INTERRUPTS, has started to be served.

The typical use of this function isto clear an interrupt flag that resides in a peripheral
register. Clearing an interrupt flag derived from On_interrupt_gtart(..) needs no additional
SET_INTERRUPT_FLAG(..) action, since the micro already has the information to clear it
inthetable.

Example:
void On_interrupt_start (1 NTERRUPT_I D pld)

REG(TWCR) . set _bit[0] == 0) /1 Clear interrupt flag
Ce /1 in peripheral register
}

On_notify()
void On_notify(int pWhat);

Notifcation derived from a NOTIFY () |.F called by another DLL. Thisisused for inter DLL
communication

45

Example, in calling DLL:
NOTI FY(“TI MERO”, 7) // Pass a notification to “TI MERD
In the receiving DLL , instance name “TIMERQO:

Void On_notify(int pwat) // Catch a NOTIFY() from antother DLL

//**********************

I f(pWhat == 7)
PRINT(“CGot it");

Seealso NOTIFY() I.F.

On_port_edge() |
void On_port_edge(PORT pPort, EDGE pEdge, double pTine)

A port notification, specifying that a RISE or FALL edge, specified by the parameter
‘pEdge’, has occurred at a port a the given time = pTime. The ‘pPort’ parameter contains the
value of a previously defined port declared at DECLARE_PINS as MICRO_PORT.

Example:

void On_port_edge(PORT pPort, EDGE pEdge, double pTine)

//***

/1 Could be used to inplenment an external clock counter

i f(pPort == TO && pEdge == RI SE) {
Count er ++;
}

}

For the DUMMY peripheral, this function must be used with a different parameter set, as
follows.

On_port_edge() 11
void On_port_edge(const char *pNane, int pBit, EDGE pEdge, double pTine)
Second version of On_port_edge(), available only for the DUMMY peripheral. ThisC.Fis

similar to the previous one, but the notification is somewhere different: instead of a port
defined as MICRO_PORT, the notification is based in the following parameters:

» pName: the port name "PA", "PB", "PC", etc

* pBit: the bit name within the port. If PA7, this number will be 7
* pEdge: it canbe RISE or FALL

46

This C.F. is especially useful to handle external interruptsin the DUMMY peripheral;

Example:

void On_port_edge(const char *pNane, int pBit, EDGE pEdge, double pTine)

//***

/1 Catch a falling edge external interrupt in the PA7 port

i f(strcnp(pNanme, “PA’) == 0) && pBit == 7 && pEdge == FALL) {
SET_| NTERRUPT_FLAG(| NTO, FLAG SET);
}

}

On_register_read()
WORD8 *On_regi ster_read(REQ STER | D pRegi ster);

This C.F. needs to be defined only if some special process or action is necessary in the
peripheral upon aregister read operation, for example: clear-on-read, read through temporary
register, etc, otherwise it use is unnecessary. The parameter ‘pRegister’ contains the affected
register ID. The return value must be the register WORDS data address involved in the read
operation. A NULL returnisinterpreted asthe normal address for the given register:

& REG(pRegister), so an standard read operation.

Example:
WRDB Tenp_register; [/ Tenporary buffer

WORD8 *On_regi ster_read(REQ STER | D pRegi ster)

//***

/1 Handling tenmporary register of AVR 16 bits timer

i f(pRegi ster == TCNT1H) /1 For all the “xxxH registers
return &Tenp_register;
el se
return NULL; /1 For the rest of registers no special
} /1 action; normal read.

a7

On_register_write()
void On_register_wite(REA STER I D pRegi ster, WRD3 pDat a);

On register_write() is perhaps the most important C.F, since it is the one used to activate or
deactivate peripherals, establish the configuration, working modes, make diagnostics, etc.

The ‘pRegister’ parameter contains the register 1D code, defined in the REGISTER 1D
macro, and the WORDS8 type ‘pData’, the byte to be written into the register.

Example:

void On_register_wite(REA STER I D pRegi ster, WORD8 pDat a)
//**

/1 Activates a timer, if bit 3 is 1. Gves sone warni ng nmessages
/1 Shows al so the inplenentation of a read-only bit (at bit 7)

{
i f(pRegi ster == TCCR1) {

if(pData[3] == 1) {
i f(Tinmer_status == COUNTI NG ({
BREAK(“Warni ng: tiner already counting”);
} else {
Ti mer _status = COUNTI NG
REM ND_ME(Ti ner_period); [// Catch count at On_rem nd_ne(..)

}
} else if(pData[3] == X) {

BREAK(“Unknown bit (X) witten at STA bit”);
}

TCCR1_reg = pbata & Ox7F; // Transfer the data to the real register
/1 bit 7 is read-only, it wll
/'l becone al ways zero.
} else if(pRegister == TCOW) {

/1 Sonme other action at other register, etc

On_reset()
void On_reset(int pResetType);

Notification about amicro RESET. The ‘pResetMode’ parameter specifies the type of reset;
it can be any of the following constants:

RESET_UNKNOWN
RESET_POWERON
RESET_EXTERNAL
RESET_BROWNOUT
RESET_WATCHDOG

48

Seeaso RESET() I.F.

Example:

void On_reset(int pResetType)

//***************************

/1 Initialize registers. Unused pReset Type

{
TCCR reg = 0;
TCOWPA reg = O;
TCOVPB_reg = O;

}

On_sleep()

void On_sleep(int pSl eepMde);

Notification sent when the micro is entering SLEEP mode. The parameter ‘ pSleepMode’
identifies the sleep type and it may be one of the following values, self-explanatory:

SLEEP_IDLE Enters sleep mode IDLE
SLEEP_NOISE_REDUCTION

SLEEP_POWERDOWN

SLEEP_POWERSAVE

SLEEP_STANDBY

SLEEP _EXIT Exits sleep mode

The code must take the necessary actions upon the reception of this notification, depending
on the peripheral behavior during SLEEP mode.

Example:

void On_sleep(int pSleepMde)

// ER Rk R IR Sk b o S R A

{
swi t ch(pSl eepMode) {

case SLEEP_|DLE: /1 SLEEP nodes

case SLEEP_PONER_DOMN: /1 affecting this peripheral
Ti mer _status = STOPPED,
br eak;

case SLEEP EXIT:
Timer_status = RUNNING // Reactivate counting events

49

Interface Functions Reference

Some new |.F. provide the necessary communication with the microcontroller: handling
interrupts, ports, clock based timing, etc.

List of new I.F. prototypes, in alphabetical order:

i nt GET_FUSE(const char *pNane);

WORD *GET_M CRO _DATA(i nt pwhat, ADDRESS pAddress);

int GET_M CRO_I NFQ(i nt pWat);

i nt NOTI FY(const char *plnstNane, int pCode);

REM ND_ME2(i nt pCycles, int pParam = 0)

voi d RESET(int pType)

BOOL SET_CLOCK(doubl e pval ue, int pResetCycles);

voi d SET_I NTERRUPT_ENABLE(| NTERRUPT_I D pld, BOQL);

voi d SET_I NTERRUPT_FLAG(| NTERRUPT_I D pld, int pAction);
BOOL SET_| NTERRUPT_VECTORS(i nt pSel ect);

i nt SET_PORT(PORT pPort, LOd C value) ;

int SET_PORT_ATTRI (PORT pPort, U NT pVal ue)

i nt TAKEOVER_PORT(PORT pPort, BOCOL pAction)

int VERSIO\();

voi d WARNI NG const char *pText, int pCategory, int pFlags);

GET_FUSE()

i nt GET_FUSE(const char *pNane);

Retrieves the fuse value, which must have been defined at the .INI file ‘Fuse _list’ and in the
corresponding section

Example:

Inthe.INI file

[SUT]

Bit_position = 4 ; SUTO stars at bit 4

N of _bits = 2 ; SUT1, SUTO

Def aul t _val ue = b10 ; nunmbers beginning with "b" are binary

Inthe DLL source code .cpp file

i f(GET_FUSE(“SUT”) == 2) [/ 2 is the default value = bl0

50

GET_MICRO_DATA)

WORD8 * GET_M CRO DATA(i nt pWhat, ADDRESS pAddr ess);

|.F. which retrieves data from the host microcontroller, initially issued to model EEPROM
peripherals, although it could be extended to more options in the future (RAM, Flash, etc)

EEPROM peripherals do not really need this function, if the user DLL takes care of all the
data management related to an EEPROM. However, if the .INI file contains the parameter
EEPROM _size, VMLAB will automatically allocates this memory space and it will
implement the EEPROM persistence by creating a <projectName>.EEP file, which will be
read and written at the proper time. So, the use of GET_EEPROM() is strongly
recommended.

The parameters controlling this function are:

‘PWhat’: specifies the object whose data has to be retrieved. It can be one of the following
self-explanatory constants defined in <blackbox.h>,

« DATA_EEPROM

» DATA_RAM (pending implementation)

» DATA_FLASH (pending implementation)

» DATA _REGISTER (pending implementation)

‘pAddress': the relevant address within the specified object

The return value isa WORDS8 pointer, being NULL, if the address is out of range or an
invalid/unsupported object is specified

Notes:

* |f aEEPROM viewer is necessary, it must be implemented in the DLL code
* Itisthe DLL code responsibility to implement access time features, etc, in EEPROM.
* Donot assumeaWORDS array structure for thereturning WORDS pointer.

Example:

void On_register_wite(REA STER I D pld, WORD8 pDat a)
{

WORD8 *nyW8 = GET_M CRO _DATA(DATA_EEPROM nyAddr ess) ;
if(myv8) {
*myW8 = nyDat a;
refresh viewer
} else
WARNI N& “ EEPROM addr ess out of range”, ...);

51

GET_MICRO_INFO()

int GET_M CRO_I NFQ(i nt pWat);

Use this function to retrieve some of the micro-controller parameters, specified by ‘pWhat’,
which can be one of the following self explanatory constants:

INFO_RAM_SIZE

INFO_FLASH_SIZE

INFO_EEPROM_SIZE

INFO_PROGRAM_COUNTER

INFO_CPU_CYCLES Cclock cycles; cleared at Reset
INFO_ADDR_MODE Addressing mode of current instruction.

The return code -1 must be interpreted as invalid request.

NOTIFY()

i nt NOTI FY(const char *plnstNane, int pCode);

|.F. used to send a notification to other DLL instance. This allows an inter-DLL
communication mechanism, which is necessary to implement some advanced simulation

features. The DLL receiving the notification must catch it with the On_notify() C.F.

A typical use of NOTIFY () isthe activation/deactivation of a peripheral by some register/bit
which are not in this peripheral. Example, PRR register bits.

In DUMMY peripheral:
NOTI FY(“ TI MERO”, DI SABLE_PRR); // DI SABLE PRR = user defined constant

TIMERQO peripheral will receive this notification through *On_notify()

void On_notify(int pCode) { /1 To catch the notification

i f (pCode == DI SABLE_PRR)

REMIND_ME2()
void REM ND_ME2(int pCycles, int pAux)

Thisisasecond version of REMIND_ME() available only for micro-peripherals. The passed
parameter isint instead of double, asin the original function, and then, the delay is

52

interpreted as a number of micro clock cycles. The ‘pAux’ parameter is an integer value that
can be used at your convenience, being reported in the subsequent On_remind_me() C.F.

Example:

REM ND_ME(250.0e-6, 5) // WII cause a On_remind_ne(.., 5) in 250uSec
REM ND_ME2(250, 9) /1 WIIl cause a On_remind_ne(., 9), in 250
/1 clock cycles

The cycle-based REMIND _ME2(') C.F. isthe right one to model clock-delayed events like
timers/counters, watchdogs, A/D conversion time, etc.

RESET()
int RESET(int pType);

Forces areset in the microcontroller, specified by the parameter ‘pType’. This can be one of
the following constants (the same asin On_reset() C.F.

RESET_UNKNOWN
RESET_POWERON
RESET_EXTERNAL
RESET_BROWNOUT
RESET_WATCHDOG

Note that whenever a peripheral issuesa RESET(), al the remaining peripherals, including
the calling one, will receive the On_reset() notification. So, avoid calling RESET within
On_reset(), otherwise an infinite loop can be created.

The main use of this function isto code watchdog peripherals.

Example:

void On_rem nd_ne(double pTinme, int pAux) { // Tick counter

i f (++Counter == TI MEOUT) RESET(RESET_WATCHDOG) ;

53

SET_CLOCK()

BOOL SET_CLOCK(doubl e pVal ue, int pResetCycles = 0);

|.F. used to change the clock value of the hosting microcontroller. It is intended to model
clock management registers (clock pre-scaling, calibration, etc). The parameter ‘pValue’
must be in Hertz. The optional parameter ‘ pResetCycles allows specifying the initial delay
after reset.

The call with the 2™ optional parameter ‘pResetCycles is only allowed within the
On_simulation_begin() C.F, otherwise an error will be flagged. Use this call style to
process the fuse options determining the initial clock values, reset delay, etc.

The function will return ‘true’ upon a successful completion and ‘false’, if the solicited
values are out-of-specs (Parameter ‘Max_clock_MHZz in.INI file). Note as well that
VMLAB restrict the minimum clock to 32KHz, due to some limitations derived from analog
simulation, therefore any attempt to set the clock under this value will return ‘false’. The
‘pPResetCycles isrestricted to amax value of 65536.

The function SET_CLOCK isonly allowed inthe DUMMY peripheral, and it will produce a
On_clock_change() notification visible in all the DLL that have defined this C.F.

Example:

i f(dk_divided_by_2) {
BOOL cl ockOK = SET_CLOCK(GET_CLOCK() / 2);
i f(!clockOK)
WARNI NG “C ock out of range”,. . .);

SET_INTERRUPT_ENABLE()

voi d SET_I NTERRUPT_ENABLE(| NTERRUPT_I D plnt, BOQL);

|.F. used to enable/disable the specified interrupt ‘pint’, which must have been included in
the DECLARE_INTERRUPTS section.

This function is necessary if the interrupt flag is in some peripheral register, and dueto a
register-write operation, this flag is modified.

Example (inaTWI):

void On_register_wite(REA STER I D pRegi ster, WRD8 pData) {

i f(pRegi ster == TWCR) { /1 Bit 0is TWE
if(pData[0] == 0 & REG(TWR)[0] == 1) /1 1f changes to 1
SET_| NTERRUPT_ENABLE(TW _I NT, true);
else if(pData[0] == 1 & REG(TWR)[0] == 0) // If changes to O
SET_| NTERRUPT_ENABLE(TW _I NT, fal se);
} else .

}

Peripherals whose flags are located in special dedicated registers specified in
‘Flag_register_list” (.INI file), as for example TIMSKX, do not need to use this function.

SET_INTERRUPT_VECTORS()
BOOL SET_| NTERRUPT_VECTORS(i nt pSel ect);

This|.F. has been included to model features like the reallocation of interrupt vectors, based
on some register contents (e.g. IVSEL bits). The returnis ‘true’ if the operation is successful
and ‘false’ if fails. The parameter ‘pSelect’ can be one of the following constants:

IV_STANDARD RESET
IV_BOOT RESET

This |.F. works in accordance with the parameters controlling the reset vector in the .INI file:
‘Default_vectors start’, ‘Boot_reset fuse' , ‘Boot_size fuse’ and ‘Boot_size map’.

Example:

i f(IVSEL bits == 0x3
SET | NTERRUPT VECTORS(1V_BOOT RESET)

SET_INTERRUPT_FLAG()

voi d SET_I NTERRUPT FLAG(| NTERRUPT D plnt, int pAction);

The parameter ‘pInt’ specifies the interrupt 1D for the flag to manage. It must have been
defined in the DECLARE_INTERRUPTS section. The ‘pAction’ parameter defines the
action to perform, and it can be one of the following values (defined in balckbox.h):

FLAG_SET: Setsthe flag; used for normal interrupts, cleared upon completion
FLAG_CEAR: Clearsthe flag (except if it is locked).
FLAG_LOCK: Sets and locks the flag. Use this mode to code level-based external

interrupts, which remain active as long as the logic level persists.
FLAG UNLOCK: Clearsand unlocksaflag set by FLAG _LOCK

Examples:

55

/1 Normal flag set
i f(++Counter_val ue == CQut put _conpare)
SET_| NTERRUPT_FLAG(OCMPA, FLAG SET);

void On_port_edge(const char *pNane, int pBit, EDGE pEdge)
//***
/1 Handling an external zero |evel-based interrupt on PA4
/1 in the DUMW peripheral DLL

if(pNamg[1l] == ‘A && pBit == 4) {
i f(pEdge == FALL)
SET_I NTERRUPT_FLAG(| NTO, FLAG LOCK); [/ WIIl remain active
el se i f(pEdge == RI SE) ...
SET_| NTERRUPT_FLAG(| NTO, FLAG UNLOCK); // till this unlocks it

SET_PORT()

i nt SET_PORT(PORT pPort, LOGd C pVal ue);

Useit to set alogic value at a given micro port. As ports are shared resources, this operation
could not be always successful, and therefore, there is areturn value indicating the exit
status. The function returns one of the following values:

PORT_OK Successful operation
PORT_NOT_OUTPUT The port has not been defined as output
PORT_NOT_OWNER The current peripheral is not the port’s owner
PORT_INVALID Thereferred port isinvalid

The codes PORT_NOT_OWNER and PORT_INVALID arelikely to be received only
during the DLL development/debugging phase, therefore, error messages are provided by
default.

Unlike the SET_LOGIC() function, SET_PORT() does not admit delayed settings. The
reason for thisis, again, that ports are shared resources, and the success cannot be
guaranteed, since the status could change during the delay.

Example:
void On_rem nd_ne(doubl e pTinme, int pAux)
// EE R b I S I 0 I I R I R I I S I S I b O

/1l Sets O on output conpare

{

i.l.‘(.+.+(bunter_val ue == Qut _conp_B) {
i f (SET_PORT(PB4, 0) != PORT_OK) {
BREAK(“War ni ng: some trouble with the port”);
}

56

}

Note: to retrieve the logic value or analog voltage in a port, use the standard 1.F
GET_LOGIC() and GET_VOLTAGE(). SeePart I.

SET_PORT_ATTRI()
BOOL SET_PORT_ATTRI (PORT pPort, U NT pAdd, U NT pRemove = 0);

Adds or removes an attribute specified at ‘pAdd’ / ‘pRemove’ at the given port. Attributes
may have different meaning, and they should be combined by ORing them. Available in
current version are:

ATTRI_DISABLE _DIGITAL: Disablesthe digital functionality in a port, being only able to
read the analog voltage. This option is specified in some microsto improve ADC
performance. Ports with this option will not produce edge notifications.

ATTRI_OPEN_DRAIN: Changes a default ‘ push-pull’ type port to ‘open-drain’. This
feature is often necessary to code certain types of peripherals, like TWI. Changing an output
port to open-drain is only possible after becoming the port owner, otherwise an error message
will be flagged.

Thereturn value is ‘false’ if any errorsoccur; ‘true otherwise.

Example:
SET_PORT_ATTRI (PBO, ATTRI _DI SABLE DIG TAL); // Adds attribute

. SET_P(PT _ATTRI (PBO, ATTRI _OPEN DRAIN, ATTRI _DI SABLE DI G TAL);
/1 Adds ‘open drain’ and renoves ‘disable digital’

TAKEOVER_PORT()

i nt TAKEOVER_PORT(PORT pPort, BOOL pTakelt, U NT pOptions = 0);

Request to be the owner of the specified ‘pPort’, if the ‘pTakelt’ parameter is‘true’, and
releaseit if it is‘false’. The parameter ‘pPort’ must have been declared as
MICRO_PORT(..).

The return value can be one of the following constants:

PORT_OK Successful request

PORT_NOT_OUTPUT Port is not defined as output. Up to the user consideration
PORT_NOT_OWNER Failed; the port is owned by another peripheral

57

PORT_INVALID Failed; invalid port ID

The parameter ‘pOptions can be one of the following constants:

FORCE_NONE Default. No 1/O direction is forced in the port.

FORCE_OUTPUT The port direction will be set to ‘output’, regardless of how is
defined by the port register

FORCE_INPUT The port direction will be set to ‘input’, regardless of how is

defined by the port register

The previous values can be additionally qualified by ORing them with the TOP_OWNER
constant. A peripheral invoking TOP_OWNER will withdraw other’s ownership, unless it
was already the TOP_OWNER. In such case, a PORT_NOT_OWNER error will be returned.

The codes PORT_NOT_OWNER and PORT_INVALID arelikely to be received only
during the DLL development/debugging phase, therefore, error messages are provided by
default. It isup to the DLL code to handle the PORT_NOT_OUTPUT return, happening only
when the FORCE_NONE option is applied.

Example:

i f (TAKEOVER PORT(OCA, true) == PORT_NOT_OUTPUT)
WARNI NG(" Qut put conpare not output", CAT_TIMER WARN TI MERS_OUTPUT);

TAKEOVER PORT(TX, true, FORCE OUTPUT | TOP OARER) .

VERSION()

int VERSI ON();

Usethe VERSION() I.F. to retrieve the corresponding ‘X’ parameter, ‘Version = x”’, as
defined in the INI file for the peripheral DLL. In thisway, a peripheral DLL can be used with
several working modes, options, etc for different microcontrollers, simplifying the code
development.

Example:

Inthe INI file,

[TI MVER1] ; Peripheral called TIMERL
DLL nodel = tinmerl ; the DLL = tinerl.dll
Regi ster _map = "TCCRO=$53, TCNT0=$52" ; Registers

Port _map = "TO=PD4" ; Ports

Version = 2 ; This is passed to the DLL

Inthe DLL source code ‘timerl.cpp’:

58

i f(VERSION() == 1)
Top_count = OxFF;
else if(VERSION() == 2)
Top_count = Ox7F; /1 This case will apply, as selected in .IN

Note that the similar I.F. GET_PARAM() is not allowed for micro peripherals code. Use
VERSION() instead.

WARNING()

voi d WARNI NG const char *pText, int pCategory, int pFlags);

Warnings about abnormal situations in a peripheral caused by awrong programming
sequence, etc, can be directly implemented with the PRINT() and BREAK() functions.

However, the WARNING() I.F. does this job but working in accordance to the VMLAB
menu ‘Options | Error reporting’ feature, by which different kind of actions and diagnostic
categories can be enabled/disabled.

The parameters ‘pCategory’ and ‘pFlags specify such diagnostic classification, and can be
one of the following constants, defined in ‘ blackbox.h”

Parameter ‘pCategory’:

CAT_MEMORY Memory-related

CAT_UART UART/USART related peripherals
CAT_ADC Analog-to-Digital Converter errors
CAT_WATCHDOG Watchdog related errors
CAT_STACK Stack pointer related errors
CAT_EEPROM EEPROM related errors

CAT_SPI Serial Peripheral Interface related errors
CAT_TWI Two Wire Interface related errors
CAT_TIMER Timersrelated errors

CAT_CPU Core/CPU related errors
CAT_PORT 1/O port related errors
CAT_COMP Analog comparator related errors

Parameter ‘pFlags:

The following constants report generic situations that apply to several peripherals:

WARN_READ_ OVERRUN Read faster that allowed
WARN_WRITE_OVERRUN Write faster than allowed
WARN_READ BUSY Read peripheral while busy
WARN_WRITE _BUSY Write to peripheral while busy

59

WARN_PARAM_BUSY Setting parameters/modes while busy
WARN_PARAM_RESERVED Setting reserved parameters/modes
WARN_PARAM_BITRATE Wrong bit-rate

WARN_MISC Miscellaneous, unclassified

Data space (memory) access related flags.

WARN_MEMORY_READ INVALID Reading froman invalid address
WARN_MEMORY_ WRITE_INVALID Writingto " " neooo

WARN_MEMORY_WRITE_X_10 Writing unknown bits (X) to 1/O register
WARN_MEMORY _INDEX_X X bitsin index register
WARN_MEMORY_INDEX_10 Accessto |/O area with indexed addressing

WARN_MEMORY _INDEX_INVALID Index pointing to invalid address

Specific constants for ADC peripherals:

WARN_ADC_CLOCK Improper ACD clock rate
WARN_ADC_REFERENCE I mproper reference voltage
WARN_ADC_SHORT Short circuit of some ADC channel
WARN_ADC_CHANNEL I mproper, inexistent or reserved channel
WARN_ADC_POWDOWN The ADC isin power-down
WARN_ADC_UNSTABLE Unstable conversion, dueto several causes

Specific constants for TWI peripherals

WARN_TWI Two Wire Interface related errors

WARN_TIMER Timersrelated errors

WARN_TIMER Timersrelated errors

Specific constants for EEPROM peripherals
WARN_EEPROM_ADDRES OUTSIDE Address outside range
WARN_EEPROM_DANGER Dangerous operation for data integrity
WARN_EEPROM_SIMULTANEOUS RW Simultaneous R/W

Specific constants for timers:

WARN_TIMERS OUTPUT Wrong configuration for cap/com signal
WARN_TIMERS 16BIT_READ Wrong sequence for 16 bits read operation
WARN_TIMERS 16BIT_WRITE Wrong sequence for 16 bits write operation
Specific constant for UARTS:

WARN_UART_FRAMING Frame error
WARN_UART_BAUDRATE Non-standard baudrate

Actions derived from WARNING (break, beep, log, etc) will be determined in the Options |
Error reporting menu.

60

Example:
WORD8 nyDat a; /1 Gve a warning about undeterm ned bits (X)

i f(wordData.x != OxFF)
WARNI NG(“Detected X bits !'”, CAT_MEMORY, WARN_XBI TS)

61

The Win32 Resources File (.RC)

Although the basic principle and structureis the same as for general user components (Part
1), the design of a micro peripheral window requires some additional comments.

VMLAB displays all the register-based information in a special Win32 control that provides
binary/hex/decimal view, optional analog bar, bit hints, editing, etc.

au e TEd] — ! | e — 0 eI

Flags/Contral Registes [I/0 space]
7 | SPH oot SPL :oooooood
n GIMSE soooooooo GIFR :ocooooood
TIMSE. :oococooooo TIFR :ocooooood

This control is modeled in VMLAB by a dedicated Win32 class name called
“WORD_8 VIEW_c”, and therefore, DLL resources must use this class name in order to
display aregister.

Displaying a given register needs a pair of Win32 controls: a*“static” type to show the
register name, and a“WORD_8 VIEW _c” to show/edit the value. The ID for the “static”
control must be the same as the “WORD_8 VIEW_c” plus 100, like:

CONTROL "", GADGET1, "WORD 8 VIEWc", ... // The register display
CONTROL "", GADGET1 + 100, "static", ... // The register nane (Id +100)
See the provided examples.

General tips and advices

Coding user components and peripherals is not difficult. To ease the startup time in this task
and overcome the initial difficulties, take into account the following advices.

» Start always from an already working component, using it as a “template’.

* Once compiled, DLLs sometimes need additional DLLs (libraries, etc) to work
properly. It isrecommended to compile/link component DLLs as
“static”/“standalone”, otherwise taken into account to deploy also the additional
DLLs.

» Usetheinternal debugging facilities at the beginning: PRINT() , TRACE().

* Report always your difficulties. Maybe there is another user that has found the
solution, and in any case, your input will be considered to improve future VMLAB
versions. (visit the AMcTools forum).

* You can share your work. A forum entry exists for users who wish to share their work
with the rest of the community. Before coding a component/peripheral, see if
someone else has already been working on this. Likewise, you can use this forum to
announce your intention to code some peripheral/component, in order to other users
do not repeat the work.

62

